Ekanem E. Ekanem , Ainur Sabirova , Ciarán Callaghan , Janet L. Scott , Karen J. Edler , Suzana P. Nunes , Davide Mattia
{"title":"使用等孔膜生产10微米以下的纤维素微珠","authors":"Ekanem E. Ekanem , Ainur Sabirova , Ciarán Callaghan , Janet L. Scott , Karen J. Edler , Suzana P. Nunes , Davide Mattia","doi":"10.1016/j.memlet.2022.100024","DOIUrl":null,"url":null,"abstract":"<div><p>The production of sub-10 µm cellulose microbeads via membrane emulsification using isoporous membranes is reported here for the first time. Poly(ethylene terephthalate) membranes, with defined interpore distances, pore diameters and straight-through pores were fabricated via photolithography. A dispersed phase of 8 wt% cellulose solution was extruded through the membrane pores, forming, due to shear provided by an overhead stirrer, cellulose solution droplets dispersed in a continuous phase composed of 2 wt% and 5 wt% Span in sunflower oil. Upon phase inversion with ethanol, sub-10 µm microbeads with a coefficient of variation (CV) < 45 % were produced by exploring the Weber number (<em>We<sub>d</sub></em>) - Capillary number (<em>Ca<sub>c</sub></em>) emulsion generation space.</p><p>These results show that sub-10 µm cellulose microbeads can be produced using isoporous polymer membranes fabricated via photolithography, for use in a wide range of applications in the personal care, food and drug industries.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000125/pdfft?md5=a836311ad3b698ebd8427c4ebe27a759&pid=1-s2.0-S2772421222000125-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Production of sub-10 micrometre cellulose microbeads using isoporous membranes\",\"authors\":\"Ekanem E. Ekanem , Ainur Sabirova , Ciarán Callaghan , Janet L. Scott , Karen J. Edler , Suzana P. Nunes , Davide Mattia\",\"doi\":\"10.1016/j.memlet.2022.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The production of sub-10 µm cellulose microbeads via membrane emulsification using isoporous membranes is reported here for the first time. Poly(ethylene terephthalate) membranes, with defined interpore distances, pore diameters and straight-through pores were fabricated via photolithography. A dispersed phase of 8 wt% cellulose solution was extruded through the membrane pores, forming, due to shear provided by an overhead stirrer, cellulose solution droplets dispersed in a continuous phase composed of 2 wt% and 5 wt% Span in sunflower oil. Upon phase inversion with ethanol, sub-10 µm microbeads with a coefficient of variation (CV) < 45 % were produced by exploring the Weber number (<em>We<sub>d</sub></em>) - Capillary number (<em>Ca<sub>c</sub></em>) emulsion generation space.</p><p>These results show that sub-10 µm cellulose microbeads can be produced using isoporous polymer membranes fabricated via photolithography, for use in a wide range of applications in the personal care, food and drug industries.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000125/pdfft?md5=a836311ad3b698ebd8427c4ebe27a759&pid=1-s2.0-S2772421222000125-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421222000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Production of sub-10 micrometre cellulose microbeads using isoporous membranes
The production of sub-10 µm cellulose microbeads via membrane emulsification using isoporous membranes is reported here for the first time. Poly(ethylene terephthalate) membranes, with defined interpore distances, pore diameters and straight-through pores were fabricated via photolithography. A dispersed phase of 8 wt% cellulose solution was extruded through the membrane pores, forming, due to shear provided by an overhead stirrer, cellulose solution droplets dispersed in a continuous phase composed of 2 wt% and 5 wt% Span in sunflower oil. Upon phase inversion with ethanol, sub-10 µm microbeads with a coefficient of variation (CV) < 45 % were produced by exploring the Weber number (Wed) - Capillary number (Cac) emulsion generation space.
These results show that sub-10 µm cellulose microbeads can be produced using isoporous polymer membranes fabricated via photolithography, for use in a wide range of applications in the personal care, food and drug industries.