与最近整数连分式相连的若干数列的分布

Cor Kraaikamp
{"title":"与最近整数连分式相连的若干数列的分布","authors":"Cor Kraaikamp","doi":"10.1016/S1385-7258(87)80038-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em><sub><em>n</em></sub>/<em>B</em><sub><em>n</em></sub>, n = 1,2,… denote the sequence of convergents of the nearest integer continued fraction expansion of the irrational number <em>x</em>, and defineΘ<sub><em>n</em></sub>(<em>x</em>): <em>B</em><sub><em>n</em></sub>|<em>B</em><sub><em>n</em></sub><em>x</em> − <em>A</em><sub><em>n</em></sub>|, n = 1,2,…. In this paper the distribution of the two-dimensional sequence (Θ<sub><em>n</em></sub>(<em>x</em>), Θ<sub><em>n+1</em></sub>(<em>x</em>)), <em>n</em> = 1,2,… is determined for almost all <em>x</em>.</p><p>Various corollaries are obtained, for instance Sendov's analogue of Vahlen's theorem for the nearest integer continued fraction. The present method is an extension of the work by H. Jager on the corresponding problem for the regular continued fraction expansion.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"90 2","pages":"Pages 177-191"},"PeriodicalIF":0.0000,"publicationDate":"1987-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80038-0","citationCount":"14","resultStr":"{\"title\":\"The distribution of some sequences connected with the nearest integer continued fraction\",\"authors\":\"Cor Kraaikamp\",\"doi\":\"10.1016/S1385-7258(87)80038-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>A</em><sub><em>n</em></sub>/<em>B</em><sub><em>n</em></sub>, n = 1,2,… denote the sequence of convergents of the nearest integer continued fraction expansion of the irrational number <em>x</em>, and defineΘ<sub><em>n</em></sub>(<em>x</em>): <em>B</em><sub><em>n</em></sub>|<em>B</em><sub><em>n</em></sub><em>x</em> − <em>A</em><sub><em>n</em></sub>|, n = 1,2,…. In this paper the distribution of the two-dimensional sequence (Θ<sub><em>n</em></sub>(<em>x</em>), Θ<sub><em>n+1</em></sub>(<em>x</em>)), <em>n</em> = 1,2,… is determined for almost all <em>x</em>.</p><p>Various corollaries are obtained, for instance Sendov's analogue of Vahlen's theorem for the nearest integer continued fraction. The present method is an extension of the work by H. Jager on the corresponding problem for the regular continued fraction expansion.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"90 2\",\"pages\":\"Pages 177-191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(87)80038-0\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725887800380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725887800380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

设An/Bn, n = 1,2,…表示无理数x的最近整数连分式展开的收敛序列,defineΘn(x): Bn|Bnx−An|, n = 1,2,....本文确定了二维数列(Θn(x), Θn+1(x)), n = 1,2,…对几乎所有x的分布,得到了若干推论,如最近整数连分式的Sendov对Vahlen定理的类比。本文方法是对H. Jager关于正则连分数展开问题的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The distribution of some sequences connected with the nearest integer continued fraction

Let An/Bn, n = 1,2,… denote the sequence of convergents of the nearest integer continued fraction expansion of the irrational number x, and defineΘn(x): Bn|BnxAn|, n = 1,2,…. In this paper the distribution of the two-dimensional sequence (Θn(x), Θn+1(x)), n = 1,2,… is determined for almost all x.

Various corollaries are obtained, for instance Sendov's analogue of Vahlen's theorem for the nearest integer continued fraction. The present method is an extension of the work by H. Jager on the corresponding problem for the regular continued fraction expansion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信