{"title":"戈特利布球群","authors":"Marek Golasiński , Juno Mukai","doi":"10.1016/j.top.2007.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper takes up the systematic study of the Gottlieb groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span> of spheres for <span><math><mi>k</mi><mo>≤</mo><mn>13</mn></math></span> by means of the classical homotopy theory methods. We fully determine the groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span> for <span><math><mi>k</mi><mo>≤</mo><mn>13</mn></math></span> except for the 2-primary components in the cases: <span><math><mi>k</mi><mo>=</mo><mn>9</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>53</mn><mo>;</mo><mi>k</mi><mo>=</mo><mn>11</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>115</mn></math></span>. In particular, we show <span><math><mrow><mo>[</mo><msub><mrow><mi>ι</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msubsup><mrow><mi>η</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>]</mo></mrow><mo>=</mo><mn>0</mn></math></span> if <span><math><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup><mo>−</mo><mn>7</mn></math></span> for <span><math><mi>i</mi><mo>≥</mo><mn>4</mn></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 6","pages":"Pages 399-430"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.11.001","citationCount":"0","resultStr":"{\"title\":\"Gottlieb groups of spheres\",\"authors\":\"Marek Golasiński , Juno Mukai\",\"doi\":\"10.1016/j.top.2007.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper takes up the systematic study of the Gottlieb groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span> of spheres for <span><math><mi>k</mi><mo>≤</mo><mn>13</mn></math></span> by means of the classical homotopy theory methods. We fully determine the groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span> for <span><math><mi>k</mi><mo>≤</mo><mn>13</mn></math></span> except for the 2-primary components in the cases: <span><math><mi>k</mi><mo>=</mo><mn>9</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>53</mn><mo>;</mo><mi>k</mi><mo>=</mo><mn>11</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>115</mn></math></span>. In particular, we show <span><math><mrow><mo>[</mo><msub><mrow><mi>ι</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msubsup><mrow><mi>η</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>]</mo></mrow><mo>=</mo><mn>0</mn></math></span> if <span><math><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup><mo>−</mo><mn>7</mn></math></span> for <span><math><mi>i</mi><mo>≥</mo><mn>4</mn></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"47 6\",\"pages\":\"Pages 399-430\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.11.001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper takes up the systematic study of the Gottlieb groups of spheres for by means of the classical homotopy theory methods. We fully determine the groups for except for the 2-primary components in the cases: . In particular, we show if for .