基于二维假设检验核的Hough变换算法

Palmer P.L., Petrou M., Kittler J.
{"title":"基于二维假设检验核的Hough变换算法","authors":"Palmer P.L.,&nbsp;Petrou M.,&nbsp;Kittler J.","doi":"10.1006/ciun.1993.1039","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a Hough transform line finding algorithm in which the voting kernel is a smooth function of differences in <em>both</em> line parameters. The shape of the voting kernel is decided in terms of a hypothesis testing approach, and the shape is adjusted to give optimal results. We show that this new kernel is robust to changes in the distribution of the underlying noise and the implementation is very fast, taking typically 2-3 s on a Sparc 2 workstation for a 256 × 256 image.</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"58 2","pages":"Pages 221-234"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1993.1039","citationCount":"0","resultStr":"{\"title\":\"A Hough Transform Algorithm with a 2D Hypothesis Testing Kernel\",\"authors\":\"Palmer P.L.,&nbsp;Petrou M.,&nbsp;Kittler J.\",\"doi\":\"10.1006/ciun.1993.1039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider a Hough transform line finding algorithm in which the voting kernel is a smooth function of differences in <em>both</em> line parameters. The shape of the voting kernel is decided in terms of a hypothesis testing approach, and the shape is adjusted to give optimal results. We show that this new kernel is robust to changes in the distribution of the underlying noise and the implementation is very fast, taking typically 2-3 s on a Sparc 2 workstation for a 256 × 256 image.</p></div>\",\"PeriodicalId\":100350,\"journal\":{\"name\":\"CVGIP: Image Understanding\",\"volume\":\"58 2\",\"pages\":\"Pages 221-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/ciun.1993.1039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVGIP: Image Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1049966083710399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966083710399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一种Hough变换寻线算法,其中投票核是两条线参数差异的光滑函数。根据假设检验方法确定投票核的形状,并调整形状以获得最佳结果。我们表明,这个新内核对底层噪声分布的变化具有鲁棒性,并且实现速度非常快,在Sparc 2工作站上处理256 × 256的图像通常需要2-3秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hough Transform Algorithm with a 2D Hypothesis Testing Kernel

In this paper we consider a Hough transform line finding algorithm in which the voting kernel is a smooth function of differences in both line parameters. The shape of the voting kernel is decided in terms of a hypothesis testing approach, and the shape is adjusted to give optimal results. We show that this new kernel is robust to changes in the distribution of the underlying noise and the implementation is very fast, taking typically 2-3 s on a Sparc 2 workstation for a 256 × 256 image.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信