{"title":"砂卵石地层中多方案重叠盾构隧道旧建筑响应的调查与测量","authors":"Xue Li , Aopeng Geng","doi":"10.1016/j.undsp.2023.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Ground movements due to tunneling are becoming increasingly critical as buildings are located around construction sites. This study proposes a new combined reinforcement method using a foundation grouting oblique pipe roof. The former improves the bearing capacity of the subsoil, and the latter blocks the transmission of soil deformation, which weakens the influence of construction during overlapped tunnel under-crossing. Based on this new method, a case study of the shield tunneling response to an old building in Line 6 of China’s Chengdu Metro is presented. Additionally, three-dimensional numerical models without reinforcement, traditional foundation grouting reinforcement, and the new combined reinforcement schemes were compared. The numerical simulation performance was verified using a set of field instrumentation data, which demonstrated that the old building response to the overlapped tunnels was under control, and the maximum deformation, angular distortion, and principal tensile strain of the building were 5.25 mm, 5.10 × 10<sup>–6</sup> rad/m, and 0.0081%, respectively. Compared with the traditional reinforcement scheme, the deformation, angular distortion, and principal tensile strain in the combined reinforcement scheme were reduced by 54.78%, 71.02%, and 70.22%, respectively. These results have important implications for the design and construction of shield tunnels and their response to old buildings.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246796742300137X/pdfft?md5=f983377171225afa89ae19b2b7e092c4&pid=1-s2.0-S246796742300137X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation and measurement of old building response to the overlapped shield tunnel of multiple schemes in the sandy cobble stratum\",\"authors\":\"Xue Li , Aopeng Geng\",\"doi\":\"10.1016/j.undsp.2023.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ground movements due to tunneling are becoming increasingly critical as buildings are located around construction sites. This study proposes a new combined reinforcement method using a foundation grouting oblique pipe roof. The former improves the bearing capacity of the subsoil, and the latter blocks the transmission of soil deformation, which weakens the influence of construction during overlapped tunnel under-crossing. Based on this new method, a case study of the shield tunneling response to an old building in Line 6 of China’s Chengdu Metro is presented. Additionally, three-dimensional numerical models without reinforcement, traditional foundation grouting reinforcement, and the new combined reinforcement schemes were compared. The numerical simulation performance was verified using a set of field instrumentation data, which demonstrated that the old building response to the overlapped tunnels was under control, and the maximum deformation, angular distortion, and principal tensile strain of the building were 5.25 mm, 5.10 × 10<sup>–6</sup> rad/m, and 0.0081%, respectively. Compared with the traditional reinforcement scheme, the deformation, angular distortion, and principal tensile strain in the combined reinforcement scheme were reduced by 54.78%, 71.02%, and 70.22%, respectively. These results have important implications for the design and construction of shield tunnels and their response to old buildings.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S246796742300137X/pdfft?md5=f983377171225afa89ae19b2b7e092c4&pid=1-s2.0-S246796742300137X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246796742300137X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246796742300137X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Investigation and measurement of old building response to the overlapped shield tunnel of multiple schemes in the sandy cobble stratum
Ground movements due to tunneling are becoming increasingly critical as buildings are located around construction sites. This study proposes a new combined reinforcement method using a foundation grouting oblique pipe roof. The former improves the bearing capacity of the subsoil, and the latter blocks the transmission of soil deformation, which weakens the influence of construction during overlapped tunnel under-crossing. Based on this new method, a case study of the shield tunneling response to an old building in Line 6 of China’s Chengdu Metro is presented. Additionally, three-dimensional numerical models without reinforcement, traditional foundation grouting reinforcement, and the new combined reinforcement schemes were compared. The numerical simulation performance was verified using a set of field instrumentation data, which demonstrated that the old building response to the overlapped tunnels was under control, and the maximum deformation, angular distortion, and principal tensile strain of the building were 5.25 mm, 5.10 × 10–6 rad/m, and 0.0081%, respectively. Compared with the traditional reinforcement scheme, the deformation, angular distortion, and principal tensile strain in the combined reinforcement scheme were reduced by 54.78%, 71.02%, and 70.22%, respectively. These results have important implications for the design and construction of shield tunnels and their response to old buildings.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.