微生物生产的燃料,商品化学品和材料从可持续的碳和能源来源

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aidan E. Cowan , Sarah H. Klass , Peter H. Winegar , Jay D. Keasling
{"title":"微生物生产的燃料,商品化学品和材料从可持续的碳和能源来源","authors":"Aidan E. Cowan ,&nbsp;Sarah H. Klass ,&nbsp;Peter H. Winegar ,&nbsp;Jay D. Keasling","doi":"10.1016/j.coisb.2023.100482","DOIUrl":null,"url":null,"abstract":"<div><p>Anthropogenic carbon emissions are driving rapid changes to the earth's climate, disrupting whole ecosystems and endangering the stability of human society. Innovations in engineered microbial fermentation enable the fossil resource-free production of fuels, commodity chemicals, and materials, thereby reducing the carbon emissions associated with these products. Microorganisms have been engineered to catabolize sustainable sources of carbon and energy (<em>i.e.</em>, plant biomass, plastic waste, and one-carbon feedstocks) and biosynthesize carbon-neutral or carbon-negative products. These engineering efforts exploit and optimize natural biological pathways or generate unnatural pathways which can biosynthesize chemicals that have not yet been accessed using synthetic chemistry. Recent advances in microbial fermentation seek not only to maximize the titer, rate, and yield of desired products, but also to tailor microbial catabolism to utilize inexpensive feedstocks. Ultimately, these advances aim to lower the cost of bioproduction so that microorganism-derived chemicals can be economically competitive with fossil-derived chemicals.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial production of fuels, commodity chemicals, and materials from sustainable sources of carbon and energy\",\"authors\":\"Aidan E. Cowan ,&nbsp;Sarah H. Klass ,&nbsp;Peter H. Winegar ,&nbsp;Jay D. Keasling\",\"doi\":\"10.1016/j.coisb.2023.100482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anthropogenic carbon emissions are driving rapid changes to the earth's climate, disrupting whole ecosystems and endangering the stability of human society. Innovations in engineered microbial fermentation enable the fossil resource-free production of fuels, commodity chemicals, and materials, thereby reducing the carbon emissions associated with these products. Microorganisms have been engineered to catabolize sustainable sources of carbon and energy (<em>i.e.</em>, plant biomass, plastic waste, and one-carbon feedstocks) and biosynthesize carbon-neutral or carbon-negative products. These engineering efforts exploit and optimize natural biological pathways or generate unnatural pathways which can biosynthesize chemicals that have not yet been accessed using synthetic chemistry. Recent advances in microbial fermentation seek not only to maximize the titer, rate, and yield of desired products, but also to tailor microbial catabolism to utilize inexpensive feedstocks. Ultimately, these advances aim to lower the cost of bioproduction so that microorganism-derived chemicals can be economically competitive with fossil-derived chemicals.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310023000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人为碳排放正在推动地球气候的快速变化,破坏整个生态系统,危及人类社会的稳定。工程微生物发酵的创新使燃料、商品化学品和材料的生产无需化石资源,从而减少了与这些产品相关的碳排放。微生物已经被设计成分解可持续的碳和能源来源(即植物生物质,塑料废物和单碳原料)并生物合成碳中性或碳负产品。这些工程努力开发和优化自然生物途径或产生非自然途径,可以生物合成尚未使用合成化学获得的化学物质。微生物发酵的最新进展不仅寻求最大限度地提高所需产品的滴度、速率和产量,而且还调整微生物分解代谢以利用廉价的原料。最终,这些进步的目标是降低生物生产的成本,这样微生物衍生的化学品就可以在经济上与化石衍生的化学品竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial production of fuels, commodity chemicals, and materials from sustainable sources of carbon and energy

Anthropogenic carbon emissions are driving rapid changes to the earth's climate, disrupting whole ecosystems and endangering the stability of human society. Innovations in engineered microbial fermentation enable the fossil resource-free production of fuels, commodity chemicals, and materials, thereby reducing the carbon emissions associated with these products. Microorganisms have been engineered to catabolize sustainable sources of carbon and energy (i.e., plant biomass, plastic waste, and one-carbon feedstocks) and biosynthesize carbon-neutral or carbon-negative products. These engineering efforts exploit and optimize natural biological pathways or generate unnatural pathways which can biosynthesize chemicals that have not yet been accessed using synthetic chemistry. Recent advances in microbial fermentation seek not only to maximize the titer, rate, and yield of desired products, but also to tailor microbial catabolism to utilize inexpensive feedstocks. Ultimately, these advances aim to lower the cost of bioproduction so that microorganism-derived chemicals can be economically competitive with fossil-derived chemicals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信