Hongfei Xu, Riming Hu, Huibo Yan, Bixuan Li, Zhenjiang Cao, Zhiguo Du, Yongji Gong, Shubin Yang and Bin Li*,
{"title":"稳定锂金属电池的溶剂化结构可调相变电解质","authors":"Hongfei Xu, Riming Hu, Huibo Yan, Bixuan Li, Zhenjiang Cao, Zhiguo Du, Yongji Gong, Shubin Yang and Bin Li*, ","doi":"10.1021/acsenergylett.2c01919","DOIUrl":null,"url":null,"abstract":"<p >Li<sup>+</sup> solvation structure (LSS) is considered to be the decisive factor in determining the electrochemical performance of lithium metal batteries. Herein, we propose a phase change electrolyte (PCE) whose LSS can be in operando regulated by changing the physical state of the electrolyte. The primary solvent of a PCE is dimethyl dodecanedioate (DDCA), which stands out among a series of solvents, exhibiting excellent comprehensive performance. The PCE shows high ionic conductivity, lithium transference number, and a wide electrochemical stability window in the solid and liquid states. Moreover, the LSS of the obtained PCE can reversibly transform between the solvent-separated ion pair (SSIP) and contact ion pair (CIP) structure according to its physical state. This characteristic enables PCE to outperform conventional liquid electrolytes in suppressing lithium dendrite growth and dissolution of active anodic materials, especially at varying temperatures. The assembled Li-LiMn<sub>2</sub>O<sub>4</sub> full cells display outstanding electrochemical performance, high Coulombic efficiency, and capacity retention.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"7 11","pages":"3761–3769"},"PeriodicalIF":18.2000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Solvation Structure-Tunable Phase Change Electrolyte for Stable Lithium Metal Batteries\",\"authors\":\"Hongfei Xu, Riming Hu, Huibo Yan, Bixuan Li, Zhenjiang Cao, Zhiguo Du, Yongji Gong, Shubin Yang and Bin Li*, \",\"doi\":\"10.1021/acsenergylett.2c01919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Li<sup>+</sup> solvation structure (LSS) is considered to be the decisive factor in determining the electrochemical performance of lithium metal batteries. Herein, we propose a phase change electrolyte (PCE) whose LSS can be in operando regulated by changing the physical state of the electrolyte. The primary solvent of a PCE is dimethyl dodecanedioate (DDCA), which stands out among a series of solvents, exhibiting excellent comprehensive performance. The PCE shows high ionic conductivity, lithium transference number, and a wide electrochemical stability window in the solid and liquid states. Moreover, the LSS of the obtained PCE can reversibly transform between the solvent-separated ion pair (SSIP) and contact ion pair (CIP) structure according to its physical state. This characteristic enables PCE to outperform conventional liquid electrolytes in suppressing lithium dendrite growth and dissolution of active anodic materials, especially at varying temperatures. The assembled Li-LiMn<sub>2</sub>O<sub>4</sub> full cells display outstanding electrochemical performance, high Coulombic efficiency, and capacity retention.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"7 11\",\"pages\":\"3761–3769\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.2c01919\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.2c01919","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solvation Structure-Tunable Phase Change Electrolyte for Stable Lithium Metal Batteries
Li+ solvation structure (LSS) is considered to be the decisive factor in determining the electrochemical performance of lithium metal batteries. Herein, we propose a phase change electrolyte (PCE) whose LSS can be in operando regulated by changing the physical state of the electrolyte. The primary solvent of a PCE is dimethyl dodecanedioate (DDCA), which stands out among a series of solvents, exhibiting excellent comprehensive performance. The PCE shows high ionic conductivity, lithium transference number, and a wide electrochemical stability window in the solid and liquid states. Moreover, the LSS of the obtained PCE can reversibly transform between the solvent-separated ion pair (SSIP) and contact ion pair (CIP) structure according to its physical state. This characteristic enables PCE to outperform conventional liquid electrolytes in suppressing lithium dendrite growth and dissolution of active anodic materials, especially at varying temperatures. The assembled Li-LiMn2O4 full cells display outstanding electrochemical performance, high Coulombic efficiency, and capacity retention.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.