基于能力的生物力学课程评分模型及其对学生成绩的影响。

IF 1.7 4区 医学 Q4 BIOPHYSICS
Kenneth J Fischer, Christopher J Fischer
{"title":"基于能力的生物力学课程评分模型及其对学生成绩的影响。","authors":"Kenneth J Fischer, Christopher J Fischer","doi":"10.1115/1.4064057","DOIUrl":null,"url":null,"abstract":"<p><p>Competency-based grading (CBG) can take different forms in different subject areas. We present a method for implementing CBG in a biomechanics course with nine primary learning objectives. Competency in each learning objective is measured by the student's ability to correctly answer knowledge questions and solve analytical problems in the field of biomechanics. The primary goal of implementing CBG was to provide more opportunities for lower-performing students to learn the material and to demonstrate that learning. To determine the efficacy of CBG to improve student learning, the primary measure was course grade distribution before and after implementation of CBG. The course grade distribution data indicated that CBG has primarily helped midperforming students to improve their grades. Because of the limitations of course grades as a measure of learning, we also performed analysis of student performance on successive attempts which indicated initial and secondary attempts are best, with student success declining on subsequent attempts. Anecdotally, many students improved performance, and thus their grade, on the (optional) final exam attempts. Limitations of the study include the limited course offerings with CBG (three), and that effects of COVID-19 may be confounding CBG data. Also, the approach places nearly all the grade on quizzes or exams. However, the approach could be modified to include homework grades, projects, and the like. Overall, the student learning in this course and implementation appears to be only positively affected, so this approach appears to have benefits in a biomechanics course.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model for Competency-Based Grading and Its Effect on Student Outcomes in a Biomechanics Course.\",\"authors\":\"Kenneth J Fischer, Christopher J Fischer\",\"doi\":\"10.1115/1.4064057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Competency-based grading (CBG) can take different forms in different subject areas. We present a method for implementing CBG in a biomechanics course with nine primary learning objectives. Competency in each learning objective is measured by the student's ability to correctly answer knowledge questions and solve analytical problems in the field of biomechanics. The primary goal of implementing CBG was to provide more opportunities for lower-performing students to learn the material and to demonstrate that learning. To determine the efficacy of CBG to improve student learning, the primary measure was course grade distribution before and after implementation of CBG. The course grade distribution data indicated that CBG has primarily helped midperforming students to improve their grades. Because of the limitations of course grades as a measure of learning, we also performed analysis of student performance on successive attempts which indicated initial and secondary attempts are best, with student success declining on subsequent attempts. Anecdotally, many students improved performance, and thus their grade, on the (optional) final exam attempts. Limitations of the study include the limited course offerings with CBG (three), and that effects of COVID-19 may be confounding CBG data. Also, the approach places nearly all the grade on quizzes or exams. However, the approach could be modified to include homework grades, projects, and the like. Overall, the student learning in this course and implementation appears to be only positively affected, so this approach appears to have benefits in a biomechanics course.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064057\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

基于能力的评分(CBG)在不同的学科领域可以采取不同的形式。我们提出了一种在生物力学课程中实施CBG的方法,该课程有九个主要学习目标。每个学习目标的能力是通过学生正确回答知识问题和解决生物力学领域分析问题的能力来衡量的。实施CBG的主要目标是为表现较差的学生提供更多学习材料和展示学习成果的机会。为了确定CBG对学生学习的改善效果,主要测量方法是实施CBG前后的课程成绩分布。课程成绩分布数据表明,CBG对表现差生的成绩提升有初步的帮助。由于课程成绩作为学习衡量标准的局限性,我们还对学生在连续尝试中的表现进行了分析,结果表明,第一次和第二次尝试是最好的,学生的成功在随后的尝试中下降。有趣的是,许多学生在(可选的)期末考试中提高了表现,从而提高了成绩。该研究的局限性包括CBG的课程设置有限(三个),并且COVID-19的影响可能会混淆CBG数据。此外,这种方法几乎把所有的成绩都放在小测验或考试上。然而,这种方法可以修改为包括家庭作业成绩、项目等。总的来说,学生在这门课程中的学习和实施似乎只有积极的影响,所以这种方法似乎在生物力学课程中有好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model for Competency-Based Grading and Its Effect on Student Outcomes in a Biomechanics Course.

Competency-based grading (CBG) can take different forms in different subject areas. We present a method for implementing CBG in a biomechanics course with nine primary learning objectives. Competency in each learning objective is measured by the student's ability to correctly answer knowledge questions and solve analytical problems in the field of biomechanics. The primary goal of implementing CBG was to provide more opportunities for lower-performing students to learn the material and to demonstrate that learning. To determine the efficacy of CBG to improve student learning, the primary measure was course grade distribution before and after implementation of CBG. The course grade distribution data indicated that CBG has primarily helped midperforming students to improve their grades. Because of the limitations of course grades as a measure of learning, we also performed analysis of student performance on successive attempts which indicated initial and secondary attempts are best, with student success declining on subsequent attempts. Anecdotally, many students improved performance, and thus their grade, on the (optional) final exam attempts. Limitations of the study include the limited course offerings with CBG (three), and that effects of COVID-19 may be confounding CBG data. Also, the approach places nearly all the grade on quizzes or exams. However, the approach could be modified to include homework grades, projects, and the like. Overall, the student learning in this course and implementation appears to be only positively affected, so this approach appears to have benefits in a biomechanics course.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信