评估模型预测反复事件的预期累积次数的性能。

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2024-01-01 Epub Date: 2023-11-17 DOI:10.1007/s10985-023-09610-x
Olivier Bouaziz
{"title":"评估模型预测反复事件的预期累积次数的性能。","authors":"Olivier Bouaziz","doi":"10.1007/s10985-023-09610-x","DOIUrl":null,"url":null,"abstract":"<p><p>In a recurrent event setting, we introduce a new score designed to evaluate the prediction ability, for a given model, of the expected cumulative number of recurrent events. This score can be seen as an extension of the Brier Score for single time to event data but works for recurrent events with or without a terminal event. Theoretical results are provided that show that under standard assumptions in a recurrent event context, our score can be asymptotically decomposed as the sum of the theoretical mean squared error between the model and the true expected cumulative number of recurrent events and an inseparability term that does not depend on the model. This decomposition is further illustrated on simulations studies. It is also shown that this score should be used in comparison with a reference model, such as a nonparametric estimator that does not include the covariates. Finally, the score is applied for the prediction of hospitalisations on a dataset of patients suffering from atrial fibrillation and a comparison of the prediction performances of different models, such as the Cox model, the Aalen Model or the Ghosh and Lin model, is investigated.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing model prediction performance for the expected cumulative number of recurrent events.\",\"authors\":\"Olivier Bouaziz\",\"doi\":\"10.1007/s10985-023-09610-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recurrent event setting, we introduce a new score designed to evaluate the prediction ability, for a given model, of the expected cumulative number of recurrent events. This score can be seen as an extension of the Brier Score for single time to event data but works for recurrent events with or without a terminal event. Theoretical results are provided that show that under standard assumptions in a recurrent event context, our score can be asymptotically decomposed as the sum of the theoretical mean squared error between the model and the true expected cumulative number of recurrent events and an inseparability term that does not depend on the model. This decomposition is further illustrated on simulations studies. It is also shown that this score should be used in comparison with a reference model, such as a nonparametric estimator that does not include the covariates. Finally, the score is applied for the prediction of hospitalisations on a dataset of patients suffering from atrial fibrillation and a comparison of the prediction performances of different models, such as the Cox model, the Aalen Model or the Ghosh and Lin model, is investigated.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-023-09610-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09610-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在重复事件设置中,我们引入了一个新的评分,用于评估给定模型对重复事件预期累积数量的预测能力。这个分数可以看作是Brier分数对事件数据的单一时间的扩展,但适用于有或没有终端事件的重复事件。提供的理论结果表明,在循环事件背景下的标准假设下,我们的分数可以渐近分解为模型与真实预期循环事件累积数之间的理论均方误差和不依赖于模型的不可分项。仿真研究进一步说明了这种分解。还表明,该分数应与参考模型(如不包括协变量的非参数估计器)进行比较。最后,将分数应用于房颤患者数据集的住院预测,并对不同模型(如Cox模型、Aalen模型或Ghosh和Lin模型)的预测性能进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing model prediction performance for the expected cumulative number of recurrent events.

Assessing model prediction performance for the expected cumulative number of recurrent events.

In a recurrent event setting, we introduce a new score designed to evaluate the prediction ability, for a given model, of the expected cumulative number of recurrent events. This score can be seen as an extension of the Brier Score for single time to event data but works for recurrent events with or without a terminal event. Theoretical results are provided that show that under standard assumptions in a recurrent event context, our score can be asymptotically decomposed as the sum of the theoretical mean squared error between the model and the true expected cumulative number of recurrent events and an inseparability term that does not depend on the model. This decomposition is further illustrated on simulations studies. It is also shown that this score should be used in comparison with a reference model, such as a nonparametric estimator that does not include the covariates. Finally, the score is applied for the prediction of hospitalisations on a dataset of patients suffering from atrial fibrillation and a comparison of the prediction performances of different models, such as the Cox model, the Aalen Model or the Ghosh and Lin model, is investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信