罗伊氏乳酸杆菌ATCC PTA 4659的基因组学、表型和临床安全性。

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Malin Sendelius, Jakob Axelsson, Peidi Liu, Stefan Roos
{"title":"罗伊氏乳酸杆菌ATCC PTA 4659的基因组学、表型和临床安全性。","authors":"Malin Sendelius, Jakob Axelsson, Peidi Liu, Stefan Roos","doi":"10.1093/jimb/kuad041","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating the safety of probiotic microorganisms is an important part of the development of probiotic products. In this study, we have performed a systematic safety assessment of Limosilactobacillus reuteri American Type Culture Collection (ATCC) PTA 4659 based on genome analysis, antibiotic susceptibility testing, phenotypic characterization, and a human clinical safety study. Genome sequence analysis showed that the strain is free from virulence and antibiotic resistance genes. Connected to this, phenotypic characterization showed that the strain is susceptible to the main classes of antibiotics. Limosilactobacillus reuteri ATCC PTA 4659 was shown to produce histamine, which has previously been described as an anti-inflammatory mediator produced by certain L. reuteri strains. However, the amount of histamine, a biogenic amine, poses no safety concern of a potential product. The strain was investigated in a human clinical safety study and was shown to survive passage through the gastrointestinal tract, both when administered at high [1 × 1011 colony-forming units (CFU)/day] and low doses (1 × 109 CFU/day). The clinical safety evaluation showed that the doses administered are safe for human consumption. Furthermore, carbohydrate utilization, mucus adhesion, and tolerance to acid and bile were studied. It was shown that L. reuteri ATCC PTA 4659 has a very high adhesion to mucus and tolerance to both gastric pH and bile, all potentially important properties for a probiotic strain. Altogether, this study has demonstrated that Limosilactobacillus reuteri ATCC PTA 4659 is safe for human consumption and along with its phenotypic characteristics and previously described anti-inflammatory effects, makes it a promising strain for future probiotic development. NCT01033539.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689046/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic, phenotypic, and clinical safety of Limosilactobacillus reuteri ATCC PTA 4659.\",\"authors\":\"Malin Sendelius, Jakob Axelsson, Peidi Liu, Stefan Roos\",\"doi\":\"10.1093/jimb/kuad041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluating the safety of probiotic microorganisms is an important part of the development of probiotic products. In this study, we have performed a systematic safety assessment of Limosilactobacillus reuteri American Type Culture Collection (ATCC) PTA 4659 based on genome analysis, antibiotic susceptibility testing, phenotypic characterization, and a human clinical safety study. Genome sequence analysis showed that the strain is free from virulence and antibiotic resistance genes. Connected to this, phenotypic characterization showed that the strain is susceptible to the main classes of antibiotics. Limosilactobacillus reuteri ATCC PTA 4659 was shown to produce histamine, which has previously been described as an anti-inflammatory mediator produced by certain L. reuteri strains. However, the amount of histamine, a biogenic amine, poses no safety concern of a potential product. The strain was investigated in a human clinical safety study and was shown to survive passage through the gastrointestinal tract, both when administered at high [1 × 1011 colony-forming units (CFU)/day] and low doses (1 × 109 CFU/day). The clinical safety evaluation showed that the doses administered are safe for human consumption. Furthermore, carbohydrate utilization, mucus adhesion, and tolerance to acid and bile were studied. It was shown that L. reuteri ATCC PTA 4659 has a very high adhesion to mucus and tolerance to both gastric pH and bile, all potentially important properties for a probiotic strain. Altogether, this study has demonstrated that Limosilactobacillus reuteri ATCC PTA 4659 is safe for human consumption and along with its phenotypic characteristics and previously described anti-inflammatory effects, makes it a promising strain for future probiotic development. NCT01033539.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689046/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuad041\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

益生菌微生物的安全性评价是益生菌产品开发的重要环节。在本研究中,我们基于基因组分析、抗生素药敏试验、表型表征和人体临床安全性研究,对罗伊氏乳酸杆菌ATCC PTA 4659进行了系统的安全性评估。基因组序列分析表明,该菌株不含毒力和耐药基因。与此相关,表型表征表明该菌株对主要种类的抗生素敏感。罗伊氏乳杆菌ATCC PTA 4659被证明可以产生组胺,而组胺以前被描述为某些罗伊氏乳杆菌菌株产生的抗炎介质。然而,作为一种生物胺,组胺的含量并不构成潜在产品的安全问题。在一项人体临床安全性研究中对该菌株进行了调查,结果显示,无论是高剂量(1 × 1011 CFU/天)还是低剂量(1 × 109 CFU/天),该菌株都能通过胃肠道存活。临床安全性评价表明,给药剂量对人类消费是安全的。此外,还研究了碳水化合物利用、粘液粘附以及对酸和胆汁的耐受性。研究表明,罗伊氏乳杆菌ATCC PTA 4659对黏液具有非常高的粘附性,对胃pH值和胆汁具有耐受性,这些都是益生菌菌株潜在的重要特性。总之,本研究表明,罗伊氏乳酸杆菌ATCC PTA 4659对人类食用是安全的,并且随着其表型特征和先前描述的抗炎作用,使其成为未来益生菌开发的有希望的菌株。NCT01033539。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomic, phenotypic, and clinical safety of Limosilactobacillus reuteri ATCC PTA 4659.

Evaluating the safety of probiotic microorganisms is an important part of the development of probiotic products. In this study, we have performed a systematic safety assessment of Limosilactobacillus reuteri American Type Culture Collection (ATCC) PTA 4659 based on genome analysis, antibiotic susceptibility testing, phenotypic characterization, and a human clinical safety study. Genome sequence analysis showed that the strain is free from virulence and antibiotic resistance genes. Connected to this, phenotypic characterization showed that the strain is susceptible to the main classes of antibiotics. Limosilactobacillus reuteri ATCC PTA 4659 was shown to produce histamine, which has previously been described as an anti-inflammatory mediator produced by certain L. reuteri strains. However, the amount of histamine, a biogenic amine, poses no safety concern of a potential product. The strain was investigated in a human clinical safety study and was shown to survive passage through the gastrointestinal tract, both when administered at high [1 × 1011 colony-forming units (CFU)/day] and low doses (1 × 109 CFU/day). The clinical safety evaluation showed that the doses administered are safe for human consumption. Furthermore, carbohydrate utilization, mucus adhesion, and tolerance to acid and bile were studied. It was shown that L. reuteri ATCC PTA 4659 has a very high adhesion to mucus and tolerance to both gastric pH and bile, all potentially important properties for a probiotic strain. Altogether, this study has demonstrated that Limosilactobacillus reuteri ATCC PTA 4659 is safe for human consumption and along with its phenotypic characteristics and previously described anti-inflammatory effects, makes it a promising strain for future probiotic development. NCT01033539.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信