垃圾燃料热解产生的炭的蒸汽气化:苯酚溶液中的吸附行为。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2024-10-01 Epub Date: 2023-11-16 DOI:10.1080/09593330.2023.2283794
Emese Sebe, Gábor Nagy, András Arnold Kállay
{"title":"垃圾燃料热解产生的炭的蒸汽气化:苯酚溶液中的吸附行为。","authors":"Emese Sebe, Gábor Nagy, András Arnold Kállay","doi":"10.1080/09593330.2023.2283794","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing waste generation trends resulted in growing attention to the technologies that aim to reduce or prevent landfilling. The pyrolysis and gasification of refuse-derived fuel (RDF) allow waste to be turned into new raw materials, like pyrolysis gas and syngas. However, the wet gas cleaning processes result in the production of highly contaminated liquid waste. Phenolic compounds are common constituents of this wastewater and often appear in the wastewater of other industries as well. In this research, the laboratory-scale steam gasification of an RDF char was performed to produce syngas and adsorbent simultaneously. The RDF was previously pyrolyzed at 700 °C maximum temperature in a Hungarian pyrolysis pilot plant with approximately 120 kg h<sup>-1</sup> capacity. In this thermal waste processing plant, the pyrolysis gas is already utilised by burning, but currently, the char ends up in landfills. The gasification of char samples was examined with different steam-to-carbon ratios (0.56, 0.84, and 1.12) and duration (30, 60, and 120 min) at 900 °C. Following gasification, the phenol removal capability of the solid by-products was investigated. The results show that its composition and energetic properties make the produced syngas more suitable to use as a raw material in the chemical industry rather than a fuel. At lower concentrations, the effectiveness of the solid by-product for phenol removal was comparable to commercial activated carbon. These are promising results about producing activated carbon from waste without any chemical treatment.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steam gasification of char derived from refuse-derived fuel pyrolysis: adsorption behaviour in phenol solutions.\",\"authors\":\"Emese Sebe, Gábor Nagy, András Arnold Kállay\",\"doi\":\"10.1080/09593330.2023.2283794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing waste generation trends resulted in growing attention to the technologies that aim to reduce or prevent landfilling. The pyrolysis and gasification of refuse-derived fuel (RDF) allow waste to be turned into new raw materials, like pyrolysis gas and syngas. However, the wet gas cleaning processes result in the production of highly contaminated liquid waste. Phenolic compounds are common constituents of this wastewater and often appear in the wastewater of other industries as well. In this research, the laboratory-scale steam gasification of an RDF char was performed to produce syngas and adsorbent simultaneously. The RDF was previously pyrolyzed at 700 °C maximum temperature in a Hungarian pyrolysis pilot plant with approximately 120 kg h<sup>-1</sup> capacity. In this thermal waste processing plant, the pyrolysis gas is already utilised by burning, but currently, the char ends up in landfills. The gasification of char samples was examined with different steam-to-carbon ratios (0.56, 0.84, and 1.12) and duration (30, 60, and 120 min) at 900 °C. Following gasification, the phenol removal capability of the solid by-products was investigated. The results show that its composition and energetic properties make the produced syngas more suitable to use as a raw material in the chemical industry rather than a fuel. At lower concentrations, the effectiveness of the solid by-product for phenol removal was comparable to commercial activated carbon. These are promising results about producing activated carbon from waste without any chemical treatment.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2023.2283794\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2023.2283794","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

日益增加的废物产生趋势导致人们越来越关注旨在减少或防止堆填的技术。垃圾衍生燃料(RDF)的热解和气化可以将废物转化为新的原料,如热解气和合成气。然而,湿气清洗过程会产生高度污染的废液。酚类化合物是该废水的常见成分,也经常出现在其他行业的废水中。在这项研究中,进行了实验室规模的RDF焦的蒸汽气化,同时产生合成气和吸附剂。RDF之前在匈牙利热解中试工厂以大约120 kg h-1的产能在700°C的最高温度下进行了热解。在这个热废物处理厂,热解气已经通过燃烧得到利用,但目前,焦炭最终被填埋。在900°C下,以不同的蒸汽碳比(0.56、0.84和1.12)和持续时间(30、60和120 min)对炭样进行气化试验。气化后,对固体副产物的苯酚脱除能力进行了研究。结果表明,其组成和能量特性使所产合成气更适合作为化工原料而不是燃料。在较低浓度下,固体副产物对苯酚的去除效果与商业活性炭相当。这些都是不经任何化学处理就能从废物中生产活性炭的有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steam gasification of char derived from refuse-derived fuel pyrolysis: adsorption behaviour in phenol solutions.

The increasing waste generation trends resulted in growing attention to the technologies that aim to reduce or prevent landfilling. The pyrolysis and gasification of refuse-derived fuel (RDF) allow waste to be turned into new raw materials, like pyrolysis gas and syngas. However, the wet gas cleaning processes result in the production of highly contaminated liquid waste. Phenolic compounds are common constituents of this wastewater and often appear in the wastewater of other industries as well. In this research, the laboratory-scale steam gasification of an RDF char was performed to produce syngas and adsorbent simultaneously. The RDF was previously pyrolyzed at 700 °C maximum temperature in a Hungarian pyrolysis pilot plant with approximately 120 kg h-1 capacity. In this thermal waste processing plant, the pyrolysis gas is already utilised by burning, but currently, the char ends up in landfills. The gasification of char samples was examined with different steam-to-carbon ratios (0.56, 0.84, and 1.12) and duration (30, 60, and 120 min) at 900 °C. Following gasification, the phenol removal capability of the solid by-products was investigated. The results show that its composition and energetic properties make the produced syngas more suitable to use as a raw material in the chemical industry rather than a fuel. At lower concentrations, the effectiveness of the solid by-product for phenol removal was comparable to commercial activated carbon. These are promising results about producing activated carbon from waste without any chemical treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信