{"title":"苦参提取物及其单体苦参酮对小鼠腹主动脉瘤的抑制作用。","authors":"Qingyi Zhang, Zeyu Cai, Zhewei Yu, Chang Di, Yingkun Qiu, Rong Qi","doi":"10.1007/s10557-023-07518-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Abdominal aortic aneurysm (AAA) is a chronic vascular disease wherein the inflammation of vascular smooth muscle cells (VSMCs) plays a pivotal role in its development. Effectively mitigating AAA involves inhibiting VSMC inflammation. Agathis dammara (Lamb.) Rich, recognized for its robust anti-inflammatory and antioxidant attributes, has been employed as a traditional medicinal resource. Nonetheless, there is a dearth of information regarding the potential of Agathis dammara extract (AD) in attenuating AAA, specifically by diminishing vascular inflammation, notably VSMC inflammation. Furthermore, the active constituents of AD necessitate identification.</p><p><strong>Aim of the study: </strong>This study sought to ascertain the efficacy of AD in reducing AAA, evaluate its impact on VSMC inflammation, and elucidate whether the monomer araucarone (AO) in AD acts as an active component against AAA.</p><p><strong>Materials and methods: </strong>The extraction of AD was conducted and subjected to analysis through High-Performance Liquid Chromatography (HPLC) and mass spectrometry. The isolation of the AO monomer followed, involving the determination of its content and purity. Subsequently, the effects of AD and AO on VSMC inflammation were assessed in vitro, encompassing an examination of inflammatory factors such as IL-6 and IL-18, as well as the activation of matrix metalloproteinase 9 (MMP9) in tumor necrosis factor-alpha (TNF-α)-stimulated VSMCs. To explore the inhibitory effects of AD/AO on AAA, C57BL/6J male mice were subjected to oral gavage (100 mg/kg) or intraperitoneal injection (50 mg/kg) of AD and AO in a porcine pancreatic elastase (PPE)-induced AAA model (14 days). This facilitated the observation of abdominal aorta dilatation, remodeling, elastic fiber disruption, and macrophage infiltration. Additionally, a three-day PPE mouse model was utilized to assess the effects of AD and AO (administered at 100 mg/kg via gavage) on acute inflammation and MMP9 expression in blood vessels. The mechanism by which AD/AO suppresses the inflammatory response was probed through the examination of NF-κB/NLRP3 pathway activation in VSMCs and aortas.</p><p><strong>Results: </strong>Liquid Chromatography-Mass Spectrometry (LC-MS) revealed that AO constituted 15.36% of AD's content, with a purity of 96%. Subsequent pharmacological investigations of AO were conducted in parallel with AD. Both AD and AO exhibited the ability to inhibit TNF-α-induced VSMC inflammation and MMP production in vitro. Furthermore, both substances effectively prevented PPE-induced AAA in mice, whether administered through gavage or intraperitoneal injection, evidenced by decreased vascular diameter dilation, disruption of elastin fiber layers, and infiltration of inflammatory cells. In the three-day PPE mouse model, AD and AO mitigated the heightened expression of inflammatory factors and the elevated expression of MMP9 induced by PPE. The activation of the NF-κB/NLRP3 pathway in both VSMCs and aortas was significantly suppressed by treatment with AD or AO.</p><p><strong>Conclusions: </strong>Through suppressing NF-κB/NLRP3 pathway activation, AD effectively mitigates the inflammatory response in VSMCs, mitigates inflammation in aortas, prevents extracellular matrix degradation, and consequently impedes the progression of AAA. AO emerges as one of the active compounds in AD responsible for inhibiting VSMC inflammation and inhibiting AAA development.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":"239-257"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agathis dammara Extract and its Monomer Araucarone Attenuate Abdominal Aortic Aneurysm in Mice.\",\"authors\":\"Qingyi Zhang, Zeyu Cai, Zhewei Yu, Chang Di, Yingkun Qiu, Rong Qi\",\"doi\":\"10.1007/s10557-023-07518-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Abdominal aortic aneurysm (AAA) is a chronic vascular disease wherein the inflammation of vascular smooth muscle cells (VSMCs) plays a pivotal role in its development. Effectively mitigating AAA involves inhibiting VSMC inflammation. Agathis dammara (Lamb.) Rich, recognized for its robust anti-inflammatory and antioxidant attributes, has been employed as a traditional medicinal resource. Nonetheless, there is a dearth of information regarding the potential of Agathis dammara extract (AD) in attenuating AAA, specifically by diminishing vascular inflammation, notably VSMC inflammation. Furthermore, the active constituents of AD necessitate identification.</p><p><strong>Aim of the study: </strong>This study sought to ascertain the efficacy of AD in reducing AAA, evaluate its impact on VSMC inflammation, and elucidate whether the monomer araucarone (AO) in AD acts as an active component against AAA.</p><p><strong>Materials and methods: </strong>The extraction of AD was conducted and subjected to analysis through High-Performance Liquid Chromatography (HPLC) and mass spectrometry. The isolation of the AO monomer followed, involving the determination of its content and purity. Subsequently, the effects of AD and AO on VSMC inflammation were assessed in vitro, encompassing an examination of inflammatory factors such as IL-6 and IL-18, as well as the activation of matrix metalloproteinase 9 (MMP9) in tumor necrosis factor-alpha (TNF-α)-stimulated VSMCs. To explore the inhibitory effects of AD/AO on AAA, C57BL/6J male mice were subjected to oral gavage (100 mg/kg) or intraperitoneal injection (50 mg/kg) of AD and AO in a porcine pancreatic elastase (PPE)-induced AAA model (14 days). This facilitated the observation of abdominal aorta dilatation, remodeling, elastic fiber disruption, and macrophage infiltration. Additionally, a three-day PPE mouse model was utilized to assess the effects of AD and AO (administered at 100 mg/kg via gavage) on acute inflammation and MMP9 expression in blood vessels. The mechanism by which AD/AO suppresses the inflammatory response was probed through the examination of NF-κB/NLRP3 pathway activation in VSMCs and aortas.</p><p><strong>Results: </strong>Liquid Chromatography-Mass Spectrometry (LC-MS) revealed that AO constituted 15.36% of AD's content, with a purity of 96%. Subsequent pharmacological investigations of AO were conducted in parallel with AD. Both AD and AO exhibited the ability to inhibit TNF-α-induced VSMC inflammation and MMP production in vitro. Furthermore, both substances effectively prevented PPE-induced AAA in mice, whether administered through gavage or intraperitoneal injection, evidenced by decreased vascular diameter dilation, disruption of elastin fiber layers, and infiltration of inflammatory cells. In the three-day PPE mouse model, AD and AO mitigated the heightened expression of inflammatory factors and the elevated expression of MMP9 induced by PPE. The activation of the NF-κB/NLRP3 pathway in both VSMCs and aortas was significantly suppressed by treatment with AD or AO.</p><p><strong>Conclusions: </strong>Through suppressing NF-κB/NLRP3 pathway activation, AD effectively mitigates the inflammatory response in VSMCs, mitigates inflammation in aortas, prevents extracellular matrix degradation, and consequently impedes the progression of AAA. AO emerges as one of the active compounds in AD responsible for inhibiting VSMC inflammation and inhibiting AAA development.</p>\",\"PeriodicalId\":9557,\"journal\":{\"name\":\"Cardiovascular Drugs and Therapy\",\"volume\":\" \",\"pages\":\"239-257\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Drugs and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10557-023-07518-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-023-07518-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Agathis dammara Extract and its Monomer Araucarone Attenuate Abdominal Aortic Aneurysm in Mice.
Background: Abdominal aortic aneurysm (AAA) is a chronic vascular disease wherein the inflammation of vascular smooth muscle cells (VSMCs) plays a pivotal role in its development. Effectively mitigating AAA involves inhibiting VSMC inflammation. Agathis dammara (Lamb.) Rich, recognized for its robust anti-inflammatory and antioxidant attributes, has been employed as a traditional medicinal resource. Nonetheless, there is a dearth of information regarding the potential of Agathis dammara extract (AD) in attenuating AAA, specifically by diminishing vascular inflammation, notably VSMC inflammation. Furthermore, the active constituents of AD necessitate identification.
Aim of the study: This study sought to ascertain the efficacy of AD in reducing AAA, evaluate its impact on VSMC inflammation, and elucidate whether the monomer araucarone (AO) in AD acts as an active component against AAA.
Materials and methods: The extraction of AD was conducted and subjected to analysis through High-Performance Liquid Chromatography (HPLC) and mass spectrometry. The isolation of the AO monomer followed, involving the determination of its content and purity. Subsequently, the effects of AD and AO on VSMC inflammation were assessed in vitro, encompassing an examination of inflammatory factors such as IL-6 and IL-18, as well as the activation of matrix metalloproteinase 9 (MMP9) in tumor necrosis factor-alpha (TNF-α)-stimulated VSMCs. To explore the inhibitory effects of AD/AO on AAA, C57BL/6J male mice were subjected to oral gavage (100 mg/kg) or intraperitoneal injection (50 mg/kg) of AD and AO in a porcine pancreatic elastase (PPE)-induced AAA model (14 days). This facilitated the observation of abdominal aorta dilatation, remodeling, elastic fiber disruption, and macrophage infiltration. Additionally, a three-day PPE mouse model was utilized to assess the effects of AD and AO (administered at 100 mg/kg via gavage) on acute inflammation and MMP9 expression in blood vessels. The mechanism by which AD/AO suppresses the inflammatory response was probed through the examination of NF-κB/NLRP3 pathway activation in VSMCs and aortas.
Results: Liquid Chromatography-Mass Spectrometry (LC-MS) revealed that AO constituted 15.36% of AD's content, with a purity of 96%. Subsequent pharmacological investigations of AO were conducted in parallel with AD. Both AD and AO exhibited the ability to inhibit TNF-α-induced VSMC inflammation and MMP production in vitro. Furthermore, both substances effectively prevented PPE-induced AAA in mice, whether administered through gavage or intraperitoneal injection, evidenced by decreased vascular diameter dilation, disruption of elastin fiber layers, and infiltration of inflammatory cells. In the three-day PPE mouse model, AD and AO mitigated the heightened expression of inflammatory factors and the elevated expression of MMP9 induced by PPE. The activation of the NF-κB/NLRP3 pathway in both VSMCs and aortas was significantly suppressed by treatment with AD or AO.
Conclusions: Through suppressing NF-κB/NLRP3 pathway activation, AD effectively mitigates the inflammatory response in VSMCs, mitigates inflammation in aortas, prevents extracellular matrix degradation, and consequently impedes the progression of AAA. AO emerges as one of the active compounds in AD responsible for inhibiting VSMC inflammation and inhibiting AAA development.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.