{"title":"PARP抑制剂治疗去势抵抗性前列腺癌的研究进展","authors":"Kent W Mouw, Atish D Choudhury","doi":"10.1007/978-3-031-30065-3_7","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is a genetically heterogenous disease and a subset of prostate tumors harbor alterations in DNA damage and repair (DDR) genes. Prostate tumor DDR gene alterations can arise via germline or somatic events and are enriched in high-grade and advanced disease. Alterations in genes in the homologous recombination (HR) repair pathway are associated with sensitivity to PARP inhibition in breast and ovarian cancer, and data from recently completed randomized trials also demonstrate benefit of PARP inhibitor therapy in patients with advanced metastatic castration-resistant prostate cancer (mCRPC) and tumor HR gene alterations. PARP inhibitors have been investigated in first-line mCRPC in biomarker-selected and unselected populations, and are currently under study in earlier disease states in patients with DDR gene alterations. This chapter focuses on the current state of PARP inhibitor development in prostate cancer with particular emphasis on biomarkers and combination therapy approaches.</p>","PeriodicalId":9486,"journal":{"name":"Cancer treatment and research","volume":"186 ","pages":"103-124"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of PARP Inhibitors in Targeting Castration-Resistant Prostate Cancer.\",\"authors\":\"Kent W Mouw, Atish D Choudhury\",\"doi\":\"10.1007/978-3-031-30065-3_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is a genetically heterogenous disease and a subset of prostate tumors harbor alterations in DNA damage and repair (DDR) genes. Prostate tumor DDR gene alterations can arise via germline or somatic events and are enriched in high-grade and advanced disease. Alterations in genes in the homologous recombination (HR) repair pathway are associated with sensitivity to PARP inhibition in breast and ovarian cancer, and data from recently completed randomized trials also demonstrate benefit of PARP inhibitor therapy in patients with advanced metastatic castration-resistant prostate cancer (mCRPC) and tumor HR gene alterations. PARP inhibitors have been investigated in first-line mCRPC in biomarker-selected and unselected populations, and are currently under study in earlier disease states in patients with DDR gene alterations. This chapter focuses on the current state of PARP inhibitor development in prostate cancer with particular emphasis on biomarkers and combination therapy approaches.</p>\",\"PeriodicalId\":9486,\"journal\":{\"name\":\"Cancer treatment and research\",\"volume\":\"186 \",\"pages\":\"103-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer treatment and research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-30065-3_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-30065-3_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Development of PARP Inhibitors in Targeting Castration-Resistant Prostate Cancer.
Prostate cancer is a genetically heterogenous disease and a subset of prostate tumors harbor alterations in DNA damage and repair (DDR) genes. Prostate tumor DDR gene alterations can arise via germline or somatic events and are enriched in high-grade and advanced disease. Alterations in genes in the homologous recombination (HR) repair pathway are associated with sensitivity to PARP inhibition in breast and ovarian cancer, and data from recently completed randomized trials also demonstrate benefit of PARP inhibitor therapy in patients with advanced metastatic castration-resistant prostate cancer (mCRPC) and tumor HR gene alterations. PARP inhibitors have been investigated in first-line mCRPC in biomarker-selected and unselected populations, and are currently under study in earlier disease states in patients with DDR gene alterations. This chapter focuses on the current state of PARP inhibitor development in prostate cancer with particular emphasis on biomarkers and combination therapy approaches.