{"title":"双极射频诱发皮肤收缩的实验研究。","authors":"Jia Liu, Zhijie Zhao, Jun Zhang, Zhibing Ma, Haonan Peng, Jinlong Huang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Facial skin relaxation has become an important part in solving the problem of facial rejuvenation. Minimally invasive or noninvasive skin-tightening procedures have become a trend for facial rejuvenation. Bipolar radiofrequency (RF) is a new option for treating skin relaxation and is more effective than noninvasive surgery without surgical incision.</p><p><strong>Objective: </strong>To explore the effect of different bipolar RF powers on the area of the original box, changes of skin and subcutaneous tissue thickness and numbers of fibroblasts in rabbits.</p><p><strong>Design: </strong>The research team performed an animal study.</p><p><strong>Setting: </strong>This study took place in Affiliated Hospital of Nanjing University of Chinese Medicine.</p><p><strong>Participants: </strong>Eighteen common-grade adult New Zealand rabbits (female, 2.5-3.0 kg).</p><p><strong>Methods: </strong>Bipolar radiofrequency therapy was given to a girl rabbit on the left side of the treatment area. Standard HE and Masson staining were performed to assess the pathological changes, area of the original box and the number of fibroblasts in skin and subcutaneous tissues.</p><p><strong>Outcome measures: </strong>(1) The area of the original box, changes of skin and subcutaneous tissue thickness, and numbers of fibroblasts under different bipolar RF temperatures or under different bipolar RF powers immediately after surgery, 1 month after surgery and 3 months after surgery were observed. (2) Standard HE and Masson staining results.</p><p><strong>Results: </strong>Under the condition of certain instrument power, at 36de 38d and 40nd the area of the original box shrank to different degrees immediately after surgery (16.54±0.37, 17.78±0.03, 17.19±0.01), 1 month after surgery (16.59±0.31, 17.82±0.01, 18.34±0.30) and 3 months after surgery (16.89±0.12, 18.16±0.14, 19.23±0.32) compared with that before surgery (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the area of the original box shrank to different degrees immediately after surgery (16.40±0.49, 15.55±0.57, 17.54±0.12, 16.19±0.27), 1 month after surgery (16.88±0.12, 17.46±0.02, 18.05±0.35, 19.41±0.08) and 3 months after surgery (19.09±1.01, 18.30±0.69, 20.00±0.29, 21.20±0.90) compared with that before surgery (P < .05). When the power was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.7, 6.8, 7), 1 month after surgery (6, 6.1, 6.3) and 3 months after surgery (6.4, 6.5, 6.2) at different temperatures (P < .05). When the temperature was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.1, 6.08, 6.03), 1 month after surgery (6.2, 6.15, 6.13), and 3 months after surgery (6.2, 6.23, 6.03) under different powers (P < .05). Under the condition of certain instrument power, at 36de 38d and 40n, the number of fibroblasts increased to different degrees immediately after surgery (26.54±2.37, 30.78±3.03, 37.19±4.01), 1 month after surgery (28.59±2.31, 34.82±3.01, 40.34±4.30), and 3 months after surgery (30.89±0.12, 38.16±0.14, 42.23±0.32) compared with that before surgery, and all were statistically significant (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the number of fibroblasts increased to different degrees immediately after surgery (28.29±2.49, 30.97±3.57, 38.74±3.12, 45.68±4.27), 1 month after surgery (30.88±3.12, 32.46±4.02, 41.05±0.35, 50.41±0.08), and 3 months after surgery (29.99±2.01, 33.30±2.69, 39.00±3.29, 23.20±2.90) compared with that before surgery, and all were statistically significant (P < .05).</p><p><strong>Conclusions: </strong>Our study clarifies that bipolar RF can decrease the skin and subcutaneous tissue thickness and increase the numbers of fibroblasts at the temperature of 36°C, 38°C, and 40°C and frequency of 16-22 W, which has a therapeutical effect on skin contraction. Our study might effectively improve the skin slack of patients, and the postoperative maintenance rate is high, and will not cause obvious complications. This study may provide a theoretical direction for clinicians to tighten the skin of patients using bipolar RF.</p>","PeriodicalId":7571,"journal":{"name":"Alternative therapies in health and medicine","volume":" ","pages":"176-181"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Skin Contraction Induced by Bipolar Radiofrequency.\",\"authors\":\"Jia Liu, Zhijie Zhao, Jun Zhang, Zhibing Ma, Haonan Peng, Jinlong Huang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Facial skin relaxation has become an important part in solving the problem of facial rejuvenation. Minimally invasive or noninvasive skin-tightening procedures have become a trend for facial rejuvenation. Bipolar radiofrequency (RF) is a new option for treating skin relaxation and is more effective than noninvasive surgery without surgical incision.</p><p><strong>Objective: </strong>To explore the effect of different bipolar RF powers on the area of the original box, changes of skin and subcutaneous tissue thickness and numbers of fibroblasts in rabbits.</p><p><strong>Design: </strong>The research team performed an animal study.</p><p><strong>Setting: </strong>This study took place in Affiliated Hospital of Nanjing University of Chinese Medicine.</p><p><strong>Participants: </strong>Eighteen common-grade adult New Zealand rabbits (female, 2.5-3.0 kg).</p><p><strong>Methods: </strong>Bipolar radiofrequency therapy was given to a girl rabbit on the left side of the treatment area. Standard HE and Masson staining were performed to assess the pathological changes, area of the original box and the number of fibroblasts in skin and subcutaneous tissues.</p><p><strong>Outcome measures: </strong>(1) The area of the original box, changes of skin and subcutaneous tissue thickness, and numbers of fibroblasts under different bipolar RF temperatures or under different bipolar RF powers immediately after surgery, 1 month after surgery and 3 months after surgery were observed. (2) Standard HE and Masson staining results.</p><p><strong>Results: </strong>Under the condition of certain instrument power, at 36de 38d and 40nd the area of the original box shrank to different degrees immediately after surgery (16.54±0.37, 17.78±0.03, 17.19±0.01), 1 month after surgery (16.59±0.31, 17.82±0.01, 18.34±0.30) and 3 months after surgery (16.89±0.12, 18.16±0.14, 19.23±0.32) compared with that before surgery (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the area of the original box shrank to different degrees immediately after surgery (16.40±0.49, 15.55±0.57, 17.54±0.12, 16.19±0.27), 1 month after surgery (16.88±0.12, 17.46±0.02, 18.05±0.35, 19.41±0.08) and 3 months after surgery (19.09±1.01, 18.30±0.69, 20.00±0.29, 21.20±0.90) compared with that before surgery (P < .05). When the power was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.7, 6.8, 7), 1 month after surgery (6, 6.1, 6.3) and 3 months after surgery (6.4, 6.5, 6.2) at different temperatures (P < .05). When the temperature was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.1, 6.08, 6.03), 1 month after surgery (6.2, 6.15, 6.13), and 3 months after surgery (6.2, 6.23, 6.03) under different powers (P < .05). Under the condition of certain instrument power, at 36de 38d and 40n, the number of fibroblasts increased to different degrees immediately after surgery (26.54±2.37, 30.78±3.03, 37.19±4.01), 1 month after surgery (28.59±2.31, 34.82±3.01, 40.34±4.30), and 3 months after surgery (30.89±0.12, 38.16±0.14, 42.23±0.32) compared with that before surgery, and all were statistically significant (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the number of fibroblasts increased to different degrees immediately after surgery (28.29±2.49, 30.97±3.57, 38.74±3.12, 45.68±4.27), 1 month after surgery (30.88±3.12, 32.46±4.02, 41.05±0.35, 50.41±0.08), and 3 months after surgery (29.99±2.01, 33.30±2.69, 39.00±3.29, 23.20±2.90) compared with that before surgery, and all were statistically significant (P < .05).</p><p><strong>Conclusions: </strong>Our study clarifies that bipolar RF can decrease the skin and subcutaneous tissue thickness and increase the numbers of fibroblasts at the temperature of 36°C, 38°C, and 40°C and frequency of 16-22 W, which has a therapeutical effect on skin contraction. Our study might effectively improve the skin slack of patients, and the postoperative maintenance rate is high, and will not cause obvious complications. This study may provide a theoretical direction for clinicians to tighten the skin of patients using bipolar RF.</p>\",\"PeriodicalId\":7571,\"journal\":{\"name\":\"Alternative therapies in health and medicine\",\"volume\":\" \",\"pages\":\"176-181\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alternative therapies in health and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alternative therapies in health and medicine","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Experimental Study of Skin Contraction Induced by Bipolar Radiofrequency.
Background: Facial skin relaxation has become an important part in solving the problem of facial rejuvenation. Minimally invasive or noninvasive skin-tightening procedures have become a trend for facial rejuvenation. Bipolar radiofrequency (RF) is a new option for treating skin relaxation and is more effective than noninvasive surgery without surgical incision.
Objective: To explore the effect of different bipolar RF powers on the area of the original box, changes of skin and subcutaneous tissue thickness and numbers of fibroblasts in rabbits.
Design: The research team performed an animal study.
Setting: This study took place in Affiliated Hospital of Nanjing University of Chinese Medicine.
Participants: Eighteen common-grade adult New Zealand rabbits (female, 2.5-3.0 kg).
Methods: Bipolar radiofrequency therapy was given to a girl rabbit on the left side of the treatment area. Standard HE and Masson staining were performed to assess the pathological changes, area of the original box and the number of fibroblasts in skin and subcutaneous tissues.
Outcome measures: (1) The area of the original box, changes of skin and subcutaneous tissue thickness, and numbers of fibroblasts under different bipolar RF temperatures or under different bipolar RF powers immediately after surgery, 1 month after surgery and 3 months after surgery were observed. (2) Standard HE and Masson staining results.
Results: Under the condition of certain instrument power, at 36de 38d and 40nd the area of the original box shrank to different degrees immediately after surgery (16.54±0.37, 17.78±0.03, 17.19±0.01), 1 month after surgery (16.59±0.31, 17.82±0.01, 18.34±0.30) and 3 months after surgery (16.89±0.12, 18.16±0.14, 19.23±0.32) compared with that before surgery (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the area of the original box shrank to different degrees immediately after surgery (16.40±0.49, 15.55±0.57, 17.54±0.12, 16.19±0.27), 1 month after surgery (16.88±0.12, 17.46±0.02, 18.05±0.35, 19.41±0.08) and 3 months after surgery (19.09±1.01, 18.30±0.69, 20.00±0.29, 21.20±0.90) compared with that before surgery (P < .05). When the power was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.7, 6.8, 7), 1 month after surgery (6, 6.1, 6.3) and 3 months after surgery (6.4, 6.5, 6.2) at different temperatures (P < .05). When the temperature was fixed, the thickness of skin and subcutaneous tissue decreased immediately after surgery (6.1, 6.08, 6.03), 1 month after surgery (6.2, 6.15, 6.13), and 3 months after surgery (6.2, 6.23, 6.03) under different powers (P < .05). Under the condition of certain instrument power, at 36de 38d and 40n, the number of fibroblasts increased to different degrees immediately after surgery (26.54±2.37, 30.78±3.03, 37.19±4.01), 1 month after surgery (28.59±2.31, 34.82±3.01, 40.34±4.30), and 3 months after surgery (30.89±0.12, 38.16±0.14, 42.23±0.32) compared with that before surgery, and all were statistically significant (P < .05). Under specific temperature conditions, at 16 W, 18 W, 20 W, and 22 W, the number of fibroblasts increased to different degrees immediately after surgery (28.29±2.49, 30.97±3.57, 38.74±3.12, 45.68±4.27), 1 month after surgery (30.88±3.12, 32.46±4.02, 41.05±0.35, 50.41±0.08), and 3 months after surgery (29.99±2.01, 33.30±2.69, 39.00±3.29, 23.20±2.90) compared with that before surgery, and all were statistically significant (P < .05).
Conclusions: Our study clarifies that bipolar RF can decrease the skin and subcutaneous tissue thickness and increase the numbers of fibroblasts at the temperature of 36°C, 38°C, and 40°C and frequency of 16-22 W, which has a therapeutical effect on skin contraction. Our study might effectively improve the skin slack of patients, and the postoperative maintenance rate is high, and will not cause obvious complications. This study may provide a theoretical direction for clinicians to tighten the skin of patients using bipolar RF.
期刊介绍:
Launched in 1995, Alternative Therapies in Health and Medicine has a mission to promote the art and science of integrative medicine and a responsibility to improve public health. We strive to maintain the highest standards of ethical medical journalism independent of special interests that is timely, accurate, and a pleasure to read. We publish original, peer-reviewed scientific articles that provide health care providers with continuing education to promote health, prevent illness, and treat disease. Alternative Therapies in Health and Medicine was the first journal in this field to be indexed in the National Library of Medicine. In 2006, 2007, and 2008, ATHM had the highest impact factor ranking of any independently published peer-reviewed CAM journal in the United States—meaning that its research articles were cited more frequently than any other journal’s in the field.
Alternative Therapies in Health and Medicine does not endorse any particular system or method but promotes the evaluation and appropriate use of all effective therapeutic approaches. Each issue contains a variety of disciplined inquiry methods, from case reports to original scientific research to systematic reviews. The editors encourage the integration of evidence-based emerging therapies with conventional medical practices by licensed health care providers in a way that promotes a comprehensive approach to health care that is focused on wellness, prevention, and healing. Alternative Therapies in Health and Medicine hopes to inform all licensed health care practitioners about developments in fields other than their own and to foster an ongoing debate about the scientific, clinical, historical, legal, political, and cultural issues that affect all of health care.