{"title":"基于一般系统理论的众包数据城市可持续发展评估模型:设计科学方法论方法","authors":"Usman Ependi, Adian Fatchur Rochim, Adi Wibowo","doi":"10.3390/smartcities6060136","DOIUrl":null,"url":null,"abstract":"In the quest to understand urban ecosystems, traditional evaluation techniques often fall short due to incompatible data sources and the absence of comprehensive, real-time data. However, with the recent surge in the availability of crowdsourced data, a dynamic view of urban systems has emerged. Recognizing the value of these data, this study illustrates how these data can bridge gaps in understanding urban interactions. Furthermore, the role of urban planners is crucial in harnessing these data effectively, ensuring that derived insights align with the practical needs of urban development. Employing the Design Science Methodology, the research study presents an assessment model grounded in the principles of the city ecosystem, drawing from the General System Theory for Smart Cities. The model is structured across three dimensions and incorporates twelve indicators. By leveraging crowdsourced data, the study offers invaluable insights for urban planners, researchers, and other professionals. This comprehensive approach holds the potential to revolutionize city sustainability assessments, deepening the grasp of intricate urban ecosystems and paving the way for more resilient future cities.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":"90 2","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Assessment Model for Sustainable Cities Using Crowdsourced Data Based on General System Theory: A Design Science Methodology Approach\",\"authors\":\"Usman Ependi, Adian Fatchur Rochim, Adi Wibowo\",\"doi\":\"10.3390/smartcities6060136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the quest to understand urban ecosystems, traditional evaluation techniques often fall short due to incompatible data sources and the absence of comprehensive, real-time data. However, with the recent surge in the availability of crowdsourced data, a dynamic view of urban systems has emerged. Recognizing the value of these data, this study illustrates how these data can bridge gaps in understanding urban interactions. Furthermore, the role of urban planners is crucial in harnessing these data effectively, ensuring that derived insights align with the practical needs of urban development. Employing the Design Science Methodology, the research study presents an assessment model grounded in the principles of the city ecosystem, drawing from the General System Theory for Smart Cities. The model is structured across three dimensions and incorporates twelve indicators. By leveraging crowdsourced data, the study offers invaluable insights for urban planners, researchers, and other professionals. This comprehensive approach holds the potential to revolutionize city sustainability assessments, deepening the grasp of intricate urban ecosystems and paving the way for more resilient future cities.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\"90 2\",\"pages\":\"0\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6060136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/smartcities6060136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Assessment Model for Sustainable Cities Using Crowdsourced Data Based on General System Theory: A Design Science Methodology Approach
In the quest to understand urban ecosystems, traditional evaluation techniques often fall short due to incompatible data sources and the absence of comprehensive, real-time data. However, with the recent surge in the availability of crowdsourced data, a dynamic view of urban systems has emerged. Recognizing the value of these data, this study illustrates how these data can bridge gaps in understanding urban interactions. Furthermore, the role of urban planners is crucial in harnessing these data effectively, ensuring that derived insights align with the practical needs of urban development. Employing the Design Science Methodology, the research study presents an assessment model grounded in the principles of the city ecosystem, drawing from the General System Theory for Smart Cities. The model is structured across three dimensions and incorporates twelve indicators. By leveraging crowdsourced data, the study offers invaluable insights for urban planners, researchers, and other professionals. This comprehensive approach holds the potential to revolutionize city sustainability assessments, deepening the grasp of intricate urban ecosystems and paving the way for more resilient future cities.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.