利用现场路面参考材料进行高光谱反射估计

IF 1.1 4区 工程技术 Q4 OPTICS
Randall A. Pietersen, Brian M. Robinson, Melissa S. Beauregard, Herbert H. Einstein
{"title":"利用现场路面参考材料进行高光谱反射估计","authors":"Randall A. Pietersen, Brian M. Robinson, Melissa S. Beauregard, Herbert H. Einstein","doi":"10.1117/1.oe.62.10.103102","DOIUrl":null,"url":null,"abstract":"When fielding near-surface hyperspectral imaging systems for computer vision applications, raw data from a sensor are often corrected to reflectance before analysis. This research presents an expedient and flexible methodology for performing spectral reflectance estimation using in situ asphalt cement concrete or Portland cement concrete pavement as a reference material. Then, to evaluate this reflectance estimation method’s utility for computer vision applications, four datasets are generated to train machine learning models for material classification: (1) a raw signal dataset, (2) a normalized dataset, (3) a reflectance dataset corrected with a standard reference material (polytetrafluoroethylene), and (4) a reflectance dataset corrected with a pavement reference material. Various machine learning algorithms are trained on each of the four datasets and all converge to excellent training accuracy (>94 % ). Models trained on the raw or normalized signals, however, did not exceed 70% accuracy when tested against new data captured under different illumination conditions, while models trained using either reflectance dataset saw almost no drop between training and testing accuracy. These results quantify the importance of reflectance correction in machine learning workflows using hyperspectral data, while also confirming practical viability of the proposed reflectance correction method for computer vision applications.","PeriodicalId":19561,"journal":{"name":"Optical Engineering","volume":"41 8","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expedient hyperspectral reflectance estimation using in situ pavement reference materials\",\"authors\":\"Randall A. Pietersen, Brian M. Robinson, Melissa S. Beauregard, Herbert H. Einstein\",\"doi\":\"10.1117/1.oe.62.10.103102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When fielding near-surface hyperspectral imaging systems for computer vision applications, raw data from a sensor are often corrected to reflectance before analysis. This research presents an expedient and flexible methodology for performing spectral reflectance estimation using in situ asphalt cement concrete or Portland cement concrete pavement as a reference material. Then, to evaluate this reflectance estimation method’s utility for computer vision applications, four datasets are generated to train machine learning models for material classification: (1) a raw signal dataset, (2) a normalized dataset, (3) a reflectance dataset corrected with a standard reference material (polytetrafluoroethylene), and (4) a reflectance dataset corrected with a pavement reference material. Various machine learning algorithms are trained on each of the four datasets and all converge to excellent training accuracy (>94 % ). Models trained on the raw or normalized signals, however, did not exceed 70% accuracy when tested against new data captured under different illumination conditions, while models trained using either reflectance dataset saw almost no drop between training and testing accuracy. These results quantify the importance of reflectance correction in machine learning workflows using hyperspectral data, while also confirming practical viability of the proposed reflectance correction method for computer vision applications.\",\"PeriodicalId\":19561,\"journal\":{\"name\":\"Optical Engineering\",\"volume\":\"41 8\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.oe.62.10.103102\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.oe.62.10.103102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

当将近地表高光谱成像系统用于计算机视觉应用时,来自传感器的原始数据通常在分析之前被校正为反射率。本研究提出了一种权宜之计和灵活的方法来执行光谱反射估计使用现场沥青水泥混凝土或波特兰水泥混凝土路面作为参考材料。然后,为了评估这种反射率估计方法在计算机视觉应用中的实用性,我们生成了四个数据集来训练机器学习模型,用于材料分类:(1)原始信号数据集,(2)规范化数据集,(3)用标准参考材料(聚四氟乙烯)校正的反射率数据集,以及(4)用路面参考材料校正的反射率数据集。在四个数据集上训练各种机器学习算法,所有算法都收敛到优秀的训练精度(> 94%)。然而,使用原始信号或归一化信号训练的模型在不同光照条件下捕获的新数据进行测试时,准确率不超过70%,而使用反射数据集训练的模型在训练和测试精度之间几乎没有下降。这些结果量化了反射率校正在使用高光谱数据的机器学习工作流程中的重要性,同时也证实了所提出的反射率校正方法在计算机视觉应用中的实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expedient hyperspectral reflectance estimation using in situ pavement reference materials
When fielding near-surface hyperspectral imaging systems for computer vision applications, raw data from a sensor are often corrected to reflectance before analysis. This research presents an expedient and flexible methodology for performing spectral reflectance estimation using in situ asphalt cement concrete or Portland cement concrete pavement as a reference material. Then, to evaluate this reflectance estimation method’s utility for computer vision applications, four datasets are generated to train machine learning models for material classification: (1) a raw signal dataset, (2) a normalized dataset, (3) a reflectance dataset corrected with a standard reference material (polytetrafluoroethylene), and (4) a reflectance dataset corrected with a pavement reference material. Various machine learning algorithms are trained on each of the four datasets and all converge to excellent training accuracy (>94 % ). Models trained on the raw or normalized signals, however, did not exceed 70% accuracy when tested against new data captured under different illumination conditions, while models trained using either reflectance dataset saw almost no drop between training and testing accuracy. These results quantify the importance of reflectance correction in machine learning workflows using hyperspectral data, while also confirming practical viability of the proposed reflectance correction method for computer vision applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Engineering
Optical Engineering 工程技术-光学
CiteScore
2.70
自引率
7.70%
发文量
393
审稿时长
2.6 months
期刊介绍: Optical Engineering publishes peer-reviewed papers reporting on research and development in optical science and engineering and the practical applications of known optical science, engineering, and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信