{"title":"在量子退火炉上建立弦模型","authors":"Steven Abel, Luca A. Nutricati, John Rizos","doi":"10.1002/prop.202300167","DOIUrl":null,"url":null,"abstract":"<p>For the first time the direct construction of string models on quantum annealers has been explored and has been investigated their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, it is highlighted the potential advantages offered by quantum annealers, which in this study promised to be roughly 50 times faster than random scans and genetic algorithm and approximately four times faster than simulated annealing.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"71 12","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300167","citationCount":"0","resultStr":"{\"title\":\"String Model Building on Quantum Annealers\",\"authors\":\"Steven Abel, Luca A. Nutricati, John Rizos\",\"doi\":\"10.1002/prop.202300167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the first time the direct construction of string models on quantum annealers has been explored and has been investigated their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, it is highlighted the potential advantages offered by quantum annealers, which in this study promised to be roughly 50 times faster than random scans and genetic algorithm and approximately four times faster than simulated annealing.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"71 12\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/prop.202300167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300167\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300167","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
For the first time the direct construction of string models on quantum annealers has been explored and has been investigated their efficiency and effectiveness in the model discovery process. Through a thorough comparison with traditional methods such as simulated annealing, random scans, and genetic algorithms, it is highlighted the potential advantages offered by quantum annealers, which in this study promised to be roughly 50 times faster than random scans and genetic algorithm and approximately four times faster than simulated annealing.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.