{"title":"联合分位数时间序列分析中的贝叶斯特征选择","authors":"Ning Ning","doi":"10.1214/23-ba1401","DOIUrl":null,"url":null,"abstract":"Quantile feature selection over correlated multivariate time series data has always been a methodological challenge and is an open problem. In this paper, we propose a general Bayesian dimension reduction methodology for feature selection in high-dimensional joint quantile time series analysis, under the name of the quantile feature selection time series (QFSTS) model. The QFSTS model is a general structural time series model, where each component yields an additive contribution to the time series modeling with direct interpretations. Its flexibility is compound in the sense that users can add/deduct components for each time series and each time series can have its own specific valued components of different sizes. Feature selection is conducted in the quantile regression component, where each time series has its own pool of contemporaneous external predictors allowing nowcasting. Bayesian methodology in extending feature selection to the quantile time series research area is developed using multivariate asymmetric Laplace distribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the Bayesian model averaging technique, all implemented consistently in the Bayesian paradigm. The QFSTS model requires small datasets to train and converges fast. Extensive examinations confirmed that the QFSTS model has superior performance in feature selection, parameter estimation, and forecast.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"32 1","pages":"0"},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Feature Selection in Joint Quantile Time Series Analysis\",\"authors\":\"Ning Ning\",\"doi\":\"10.1214/23-ba1401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantile feature selection over correlated multivariate time series data has always been a methodological challenge and is an open problem. In this paper, we propose a general Bayesian dimension reduction methodology for feature selection in high-dimensional joint quantile time series analysis, under the name of the quantile feature selection time series (QFSTS) model. The QFSTS model is a general structural time series model, where each component yields an additive contribution to the time series modeling with direct interpretations. Its flexibility is compound in the sense that users can add/deduct components for each time series and each time series can have its own specific valued components of different sizes. Feature selection is conducted in the quantile regression component, where each time series has its own pool of contemporaneous external predictors allowing nowcasting. Bayesian methodology in extending feature selection to the quantile time series research area is developed using multivariate asymmetric Laplace distribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the Bayesian model averaging technique, all implemented consistently in the Bayesian paradigm. The QFSTS model requires small datasets to train and converges fast. Extensive examinations confirmed that the QFSTS model has superior performance in feature selection, parameter estimation, and forecast.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ba1401\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ba1401","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayesian Feature Selection in Joint Quantile Time Series Analysis
Quantile feature selection over correlated multivariate time series data has always been a methodological challenge and is an open problem. In this paper, we propose a general Bayesian dimension reduction methodology for feature selection in high-dimensional joint quantile time series analysis, under the name of the quantile feature selection time series (QFSTS) model. The QFSTS model is a general structural time series model, where each component yields an additive contribution to the time series modeling with direct interpretations. Its flexibility is compound in the sense that users can add/deduct components for each time series and each time series can have its own specific valued components of different sizes. Feature selection is conducted in the quantile regression component, where each time series has its own pool of contemporaneous external predictors allowing nowcasting. Bayesian methodology in extending feature selection to the quantile time series research area is developed using multivariate asymmetric Laplace distribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the Bayesian model averaging technique, all implemented consistently in the Bayesian paradigm. The QFSTS model requires small datasets to train and converges fast. Extensive examinations confirmed that the QFSTS model has superior performance in feature selection, parameter estimation, and forecast.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.