联合分位数时间序列分析中的贝叶斯特征选择

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ning Ning
{"title":"联合分位数时间序列分析中的贝叶斯特征选择","authors":"Ning Ning","doi":"10.1214/23-ba1401","DOIUrl":null,"url":null,"abstract":"Quantile feature selection over correlated multivariate time series data has always been a methodological challenge and is an open problem. In this paper, we propose a general Bayesian dimension reduction methodology for feature selection in high-dimensional joint quantile time series analysis, under the name of the quantile feature selection time series (QFSTS) model. The QFSTS model is a general structural time series model, where each component yields an additive contribution to the time series modeling with direct interpretations. Its flexibility is compound in the sense that users can add/deduct components for each time series and each time series can have its own specific valued components of different sizes. Feature selection is conducted in the quantile regression component, where each time series has its own pool of contemporaneous external predictors allowing nowcasting. Bayesian methodology in extending feature selection to the quantile time series research area is developed using multivariate asymmetric Laplace distribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the Bayesian model averaging technique, all implemented consistently in the Bayesian paradigm. The QFSTS model requires small datasets to train and converges fast. Extensive examinations confirmed that the QFSTS model has superior performance in feature selection, parameter estimation, and forecast.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":"32 1","pages":"0"},"PeriodicalIF":4.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Feature Selection in Joint Quantile Time Series Analysis\",\"authors\":\"Ning Ning\",\"doi\":\"10.1214/23-ba1401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantile feature selection over correlated multivariate time series data has always been a methodological challenge and is an open problem. In this paper, we propose a general Bayesian dimension reduction methodology for feature selection in high-dimensional joint quantile time series analysis, under the name of the quantile feature selection time series (QFSTS) model. The QFSTS model is a general structural time series model, where each component yields an additive contribution to the time series modeling with direct interpretations. Its flexibility is compound in the sense that users can add/deduct components for each time series and each time series can have its own specific valued components of different sizes. Feature selection is conducted in the quantile regression component, where each time series has its own pool of contemporaneous external predictors allowing nowcasting. Bayesian methodology in extending feature selection to the quantile time series research area is developed using multivariate asymmetric Laplace distribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the Bayesian model averaging technique, all implemented consistently in the Bayesian paradigm. The QFSTS model requires small datasets to train and converges fast. Extensive examinations confirmed that the QFSTS model has superior performance in feature selection, parameter estimation, and forecast.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ba1401\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ba1401","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多变量相关时间序列数据的分位数特征选择一直是一个方法学上的挑战,也是一个开放性问题。本文提出了一种用于高维联合分位数时间序列分析特征选择的通用贝叶斯降维方法,并将其命名为分位数特征选择时间序列(QFSTS)模型。QFSTS模型是一个通用的结构时间序列模型,其中每个组件都对具有直接解释的时间序列建模产生附加贡献。它的灵活性是复合的,用户可以为每个时间序列添加/减去组件,每个时间序列可以有自己不同大小的特定值组件。特征选择在分位数回归组件中进行,其中每个时间序列都有自己的同时外部预测因子池,允许临近预测。将特征选择扩展到分位数时间序列研究领域的贝叶斯方法是使用多元非对称拉普拉斯分布、spike- slab先验设置、Metropolis-Hastings算法和贝叶斯模型平均技术开发的,所有这些都在贝叶斯范式中一致实现。QFSTS模型需要小的数据集来训练和快速收敛。大量的实验证实了QFSTS模型在特征选择、参数估计和预测方面具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Feature Selection in Joint Quantile Time Series Analysis
Quantile feature selection over correlated multivariate time series data has always been a methodological challenge and is an open problem. In this paper, we propose a general Bayesian dimension reduction methodology for feature selection in high-dimensional joint quantile time series analysis, under the name of the quantile feature selection time series (QFSTS) model. The QFSTS model is a general structural time series model, where each component yields an additive contribution to the time series modeling with direct interpretations. Its flexibility is compound in the sense that users can add/deduct components for each time series and each time series can have its own specific valued components of different sizes. Feature selection is conducted in the quantile regression component, where each time series has its own pool of contemporaneous external predictors allowing nowcasting. Bayesian methodology in extending feature selection to the quantile time series research area is developed using multivariate asymmetric Laplace distribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the Bayesian model averaging technique, all implemented consistently in the Bayesian paradigm. The QFSTS model requires small datasets to train and converges fast. Extensive examinations confirmed that the QFSTS model has superior performance in feature selection, parameter estimation, and forecast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信