非磁化行星磁鞘中镜像模式结构的统计分布。第2部分:金星快车飞船观测到的金星

IF 1.7 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, Magda Delva
{"title":"非磁化行星磁鞘中镜像模式结构的统计分布。第2部分:金星快车飞船观测到的金星","authors":"Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, Magda Delva","doi":"10.5194/angeo-41-389-2023","DOIUrl":null,"url":null,"abstract":"Abstract. In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low). The detection of these structures is done through magnetic-field-only criteria, and ambiguous determinations are checked further. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments. Applied to the magnetometer data of the Venus Express (VEX) spacecraft from May 2006 to November 2014, we detect structures closely resembling MMs lasting in total more than 93 000 s, corresponding to about 0.6 % of VEX's total time spent in Venus's plasma environment. We calculate MM-like occurrences normalized to the spacecraft's residence time during the course of the mission. Detection probabilities are about 10 % at most for any given controlling parameter. In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. For solar maximum, the active region behind the bow shock is further inside the magnetosheath, near the solar minimum bow shock location. The ratios of the observations during solar minimum and maximum are slightly dependent on the depth ΔB/B of the structures; deeper structures are more prevalent at solar maximum. A dependence on solar EUV (F10.7) flux is also present, where at higher F10.7 flux the events occur at higher values than the daily-average value of the flux. The main dependence of the MM-like structures is on the condition of the bow shock: for quasi-perpendicular conditions, the MM occurrence rate is higher than for quasi-parallel conditions. However, when the shock becomes “too perpendicular” the chance of observing MM-like structures reduces again. Combining the plasma data from the Ion Mass Analyser (IMA on board Venus Express) with the magnetometer data shows that the instability criterion for MMs is reduced in the two main regions where the structures are measured, whereas it is still enhanced in the region between these two regions, implying that the generation of MMs is transferring energy from the particles to the field. With the addition of the Electron Spectrometer (ELS on board Venus Express) data, it is possible to show that there is an anti-phase between the magnetic field strength and the density for the MM-like structures. This study is Part 2 of a series of papers on the magnetosheaths of Mars and Venus.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"76 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetized planets – Part 2: Venus as observed by the Venus Express spacecraft\",\"authors\":\"Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, Magda Delva\",\"doi\":\"10.5194/angeo-41-389-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low). The detection of these structures is done through magnetic-field-only criteria, and ambiguous determinations are checked further. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments. Applied to the magnetometer data of the Venus Express (VEX) spacecraft from May 2006 to November 2014, we detect structures closely resembling MMs lasting in total more than 93 000 s, corresponding to about 0.6 % of VEX's total time spent in Venus's plasma environment. We calculate MM-like occurrences normalized to the spacecraft's residence time during the course of the mission. Detection probabilities are about 10 % at most for any given controlling parameter. In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. For solar maximum, the active region behind the bow shock is further inside the magnetosheath, near the solar minimum bow shock location. The ratios of the observations during solar minimum and maximum are slightly dependent on the depth ΔB/B of the structures; deeper structures are more prevalent at solar maximum. A dependence on solar EUV (F10.7) flux is also present, where at higher F10.7 flux the events occur at higher values than the daily-average value of the flux. The main dependence of the MM-like structures is on the condition of the bow shock: for quasi-perpendicular conditions, the MM occurrence rate is higher than for quasi-parallel conditions. However, when the shock becomes “too perpendicular” the chance of observing MM-like structures reduces again. Combining the plasma data from the Ion Mass Analyser (IMA on board Venus Express) with the magnetometer data shows that the instability criterion for MMs is reduced in the two main regions where the structures are measured, whereas it is still enhanced in the region between these two regions, implying that the generation of MMs is transferring energy from the particles to the field. With the addition of the Electron Spectrometer (ELS on board Venus Express) data, it is possible to show that there is an anti-phase between the magnetic field strength and the density for the MM-like structures. This study is Part 2 of a series of papers on the magnetosheaths of Mars and Venus.\",\"PeriodicalId\":50777,\"journal\":{\"name\":\"Annales Geophysicae\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Geophysicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/angeo-41-389-2023\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/angeo-41-389-2023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在这一系列的论文中,我们给出了火星和金星磁鞘中类似镜像模式(MM)结构的统计图,并计算了在航天器数据中探测到它们的概率。我们的目标是研究和比较它们在两个行星上使用相同的工具和类似的有效载荷。我们认为它们依赖于极紫外(EUV)太阳通量水平(高和低)。这些结构的检测是通过磁场标准完成的,并进一步检查模糊的确定。与之前在地球上进行的许多研究一样,这项技术的优点是使用一种具有良好时间分辨率的仪器(磁力计),便于比较行星和彗星的环境。利用2006年5月至2014年11月金星快车(Venus Express, VEX)航天器的磁力计数据,我们发现了与mm非常相似的结构,持续时间总计超过93000秒,相当于VEX在金星等离子体环境中总时间的0.6%。我们计算了在任务过程中按航天器停留时间归一化的mm样事件。对于任何给定的控制参数,检测概率最多约为10%。一般来说,像mm一样的结构出现在两个主要区域:一个在激波后面,另一个靠近感应磁层边界,正如理论所预期的那样。对于太阳极大期,弓形激波后的活动区域在磁鞘内更远,靠近太阳最小弓形激波的位置。极小期和极大期观测值的比值与结构的深度ΔB/B有轻微的关系;深层结构在太阳活动极大期更为普遍。也存在对太阳EUV (F10.7)通量的依赖,其中在较高的F10.7通量下,事件发生的值高于通量的日平均值。类MM结构主要依赖于船首激波条件,在准垂直条件下,MM的发生率高于准平行条件。然而,当震波变得“过于垂直”时,观测到mm状结构的机会再次减少。结合金星特快上离子质量分析仪(IMA)的等离子体数据和磁力计数据表明,在测量结构的两个主要区域,mm的不稳定性判据降低,而在这两个区域之间的区域,mm的不稳定性判据仍然增强,这意味着mm的产生正在将能量从粒子传递到场。随着电子谱仪(金星快车上的ELS)数据的增加,有可能表明磁场强度和mm样结构的密度之间存在反相。这项研究是火星和金星磁鞘系列论文的第二部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetized planets – Part 2: Venus as observed by the Venus Express spacecraft
Abstract. In this series of papers, we present statistical maps of mirror-mode-like (MM) structures in the magnetosheaths of Mars and Venus and calculate the probability of detecting them in spacecraft data. We aim to study and compare them with the same tools and a similar payload at both planets. We consider their dependence on extreme ultraviolet (EUV) solar flux levels (high and low). The detection of these structures is done through magnetic-field-only criteria, and ambiguous determinations are checked further. In line with many previous studies at Earth, this technique has the advantage of using one instrument (a magnetometer) with good time resolution, facilitating comparisons between planetary and cometary environments. Applied to the magnetometer data of the Venus Express (VEX) spacecraft from May 2006 to November 2014, we detect structures closely resembling MMs lasting in total more than 93 000 s, corresponding to about 0.6 % of VEX's total time spent in Venus's plasma environment. We calculate MM-like occurrences normalized to the spacecraft's residence time during the course of the mission. Detection probabilities are about 10 % at most for any given controlling parameter. In general, MM-like structures appear in two main regions: one behind the shock and the other close to the induced magnetospheric boundary, as expected from theory. For solar maximum, the active region behind the bow shock is further inside the magnetosheath, near the solar minimum bow shock location. The ratios of the observations during solar minimum and maximum are slightly dependent on the depth ΔB/B of the structures; deeper structures are more prevalent at solar maximum. A dependence on solar EUV (F10.7) flux is also present, where at higher F10.7 flux the events occur at higher values than the daily-average value of the flux. The main dependence of the MM-like structures is on the condition of the bow shock: for quasi-perpendicular conditions, the MM occurrence rate is higher than for quasi-parallel conditions. However, when the shock becomes “too perpendicular” the chance of observing MM-like structures reduces again. Combining the plasma data from the Ion Mass Analyser (IMA on board Venus Express) with the magnetometer data shows that the instability criterion for MMs is reduced in the two main regions where the structures are measured, whereas it is still enhanced in the region between these two regions, implying that the generation of MMs is transferring energy from the particles to the field. With the addition of the Electron Spectrometer (ELS on board Venus Express) data, it is possible to show that there is an anti-phase between the magnetic field strength and the density for the MM-like structures. This study is Part 2 of a series of papers on the magnetosheaths of Mars and Venus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Geophysicae
Annales Geophysicae 地学-地球科学综合
CiteScore
4.30
自引率
0.00%
发文量
42
审稿时长
2 months
期刊介绍: Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信