基于良率特征的降维聚类分析

James De La Torre, Don Kent, David Pivin, Eric St Pierre
{"title":"基于良率特征的降维聚类分析","authors":"James De La Torre, Don Kent, David Pivin, Eric St Pierre","doi":"10.31399/asm.cp.istfa2023p0001","DOIUrl":null,"url":null,"abstract":"Abstract The job of yield and failure analysis (YA and FA) engineers is to identify the root cause of low-yielding wafers. While physical FA is the most definitive method for determining root cause, resource limitations require YA engineers to search for root cause by identifying other wafers with similar yield signatures. The immense number of yield parameters, or features, collected in modern semiconductor processes makes this a difficult task. This paper presents a workflow employing multiple AI techniques to separate groups of wafers by their distinct yield signatures and determine the parameters most important to defining each group. This aids in the disposition of new low-yield wafers, maximizes the learning from previously collected FA wafers, and allows FA resources to be allocated more effectively, prioritizing them for the highest-impact, unknown fail modes.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensionality Reduction and Clustering by Yield Signatures to Identify Candidates for Failure Analysis\",\"authors\":\"James De La Torre, Don Kent, David Pivin, Eric St Pierre\",\"doi\":\"10.31399/asm.cp.istfa2023p0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The job of yield and failure analysis (YA and FA) engineers is to identify the root cause of low-yielding wafers. While physical FA is the most definitive method for determining root cause, resource limitations require YA engineers to search for root cause by identifying other wafers with similar yield signatures. The immense number of yield parameters, or features, collected in modern semiconductor processes makes this a difficult task. This paper presents a workflow employing multiple AI techniques to separate groups of wafers by their distinct yield signatures and determine the parameters most important to defining each group. This aids in the disposition of new low-yield wafers, maximizes the learning from previously collected FA wafers, and allows FA resources to be allocated more effectively, prioritizing them for the highest-impact, unknown fail modes.\",\"PeriodicalId\":20443,\"journal\":{\"name\":\"Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2023p0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

良率和失效分析(YA和FA)工程师的工作是找出低良率晶圆的根本原因。虽然物理FA是确定根本原因的最明确方法,但资源限制要求YA工程师通过识别具有类似良率特征的其他晶圆来搜索根本原因。在现代半导体工艺中收集的大量产量参数或特征使这一任务变得困难。本文提出了一种采用多种人工智能技术的工作流程,通过不同的产量特征来分离晶圆组,并确定定义每组晶圆最重要的参数。这有助于处理新的低产量晶圆,最大限度地从先前收集的FA晶圆中学习,并允许FA资源更有效地分配,优先考虑影响最大的未知故障模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensionality Reduction and Clustering by Yield Signatures to Identify Candidates for Failure Analysis
Abstract The job of yield and failure analysis (YA and FA) engineers is to identify the root cause of low-yielding wafers. While physical FA is the most definitive method for determining root cause, resource limitations require YA engineers to search for root cause by identifying other wafers with similar yield signatures. The immense number of yield parameters, or features, collected in modern semiconductor processes makes this a difficult task. This paper presents a workflow employing multiple AI techniques to separate groups of wafers by their distinct yield signatures and determine the parameters most important to defining each group. This aids in the disposition of new low-yield wafers, maximizes the learning from previously collected FA wafers, and allows FA resources to be allocated more effectively, prioritizing them for the highest-impact, unknown fail modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信