Grigore Moldovan, William Courbat, Jörg Jatzkowski
{"title":"彩色编码多通道纳米探针EFA研究进展","authors":"Grigore Moldovan, William Courbat, Jörg Jatzkowski","doi":"10.31399/asm.cp.istfa2023p0427","DOIUrl":null,"url":null,"abstract":"Abstract Key improvements to data acquisition, visualization and analysis are presented for Electrical Failure Analysis (EFA). Multi-channel image acquisition is introduced, where every nanoprobe is used for simultaneous imaging, in combination with color coding either by probe or by current. This new approach improves visualization of new device technologies with increasing three-dimensional complexity, in particular for overlapping structures and fields. Further, this new multichannel method opens opportunities for image mixing to improve data quality and signal interpretation.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in EFA with Color Coded Multi-Channel Nanoprobing\",\"authors\":\"Grigore Moldovan, William Courbat, Jörg Jatzkowski\",\"doi\":\"10.31399/asm.cp.istfa2023p0427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Key improvements to data acquisition, visualization and analysis are presented for Electrical Failure Analysis (EFA). Multi-channel image acquisition is introduced, where every nanoprobe is used for simultaneous imaging, in combination with color coding either by probe or by current. This new approach improves visualization of new device technologies with increasing three-dimensional complexity, in particular for overlapping structures and fields. Further, this new multichannel method opens opportunities for image mixing to improve data quality and signal interpretation.\",\"PeriodicalId\":20443,\"journal\":{\"name\":\"Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2023p0427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advances in EFA with Color Coded Multi-Channel Nanoprobing
Abstract Key improvements to data acquisition, visualization and analysis are presented for Electrical Failure Analysis (EFA). Multi-channel image acquisition is introduced, where every nanoprobe is used for simultaneous imaging, in combination with color coding either by probe or by current. This new approach improves visualization of new device technologies with increasing three-dimensional complexity, in particular for overlapping structures and fields. Further, this new multichannel method opens opportunities for image mixing to improve data quality and signal interpretation.