{"title":"FIB-SEM断层扫描采集和数据处理优化的逻辑和存储结构","authors":"Heiko Stegmann, Alexandre Laquerre","doi":"10.31399/asm.cp.istfa2023p0387","DOIUrl":null,"url":null,"abstract":"Abstract Focused-Ion Beam Scanning Electron Microscopy (FIB-SEM) tomography is a high resolution three-dimensional (3D) imaging method with applications in failure analysis and metrology of semiconductor devices. For the smallest logic and memory structures currently in use, it requires single-digit nanometer 3D resolution. In this resolution range, avoiding distortion artifacts in the data becomes crucial. We present examples and discuss ways to reduce the likelihood of such artifacts during the data acquisition, as well as how to mitigate them in post-processing, and therefore increase the data quality.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIB-SEM Tomography Acquisition and Data Processing Optimization for Logic and Memory Structures\",\"authors\":\"Heiko Stegmann, Alexandre Laquerre\",\"doi\":\"10.31399/asm.cp.istfa2023p0387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Focused-Ion Beam Scanning Electron Microscopy (FIB-SEM) tomography is a high resolution three-dimensional (3D) imaging method with applications in failure analysis and metrology of semiconductor devices. For the smallest logic and memory structures currently in use, it requires single-digit nanometer 3D resolution. In this resolution range, avoiding distortion artifacts in the data becomes crucial. We present examples and discuss ways to reduce the likelihood of such artifacts during the data acquisition, as well as how to mitigate them in post-processing, and therefore increase the data quality.\",\"PeriodicalId\":20443,\"journal\":{\"name\":\"Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2023p0387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FIB-SEM Tomography Acquisition and Data Processing Optimization for Logic and Memory Structures
Abstract Focused-Ion Beam Scanning Electron Microscopy (FIB-SEM) tomography is a high resolution three-dimensional (3D) imaging method with applications in failure analysis and metrology of semiconductor devices. For the smallest logic and memory structures currently in use, it requires single-digit nanometer 3D resolution. In this resolution range, avoiding distortion artifacts in the data becomes crucial. We present examples and discuss ways to reduce the likelihood of such artifacts during the data acquisition, as well as how to mitigate them in post-processing, and therefore increase the data quality.