Mario Wolf, Bugra Birki, Peter Hoffrogge, Peter Czurratis, Chaitanya Bakre, Mario Pacheco, Deepak Goyal
{"title":"近场合成孔径聚焦技术提高多层HBM扫描声显微镜检测能力","authors":"Mario Wolf, Bugra Birki, Peter Hoffrogge, Peter Czurratis, Chaitanya Bakre, Mario Pacheco, Deepak Goyal","doi":"10.31399/asm.cp.istfa2023p0448","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates the enhanced inspection of High Bandwidth Memory (HBM) stacks using Scanning Acoustic Microscopy (SAM). As the multi-layer structure is quite complex, sophisticated signal processing methods are employed. To improve detection capabilities and inspection time, the Synthetic Aperture Focusing Technique (SAFT) is utilized. In contrast to previous trials applying SAFT on SAM data, this contribution introduces Near Field SAFT. Reconstruction is also performed for layers between the transducer and its focus, in the near field of the transducer. This approach allows for measurements with common working distances, providing higher frequencies and improved resolution. Systematic evaluations are conducted on various measurement setups and transducers with different center frequencies and focal lengths in order to determine the most optimal measurement setup.","PeriodicalId":20443,"journal":{"name":"Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Field Synthetic Aperture Focusing Technique to Enhance the Inspection Capability of Multi-Layer HBM Stacks in Scanning Acoustic Microscopy\",\"authors\":\"Mario Wolf, Bugra Birki, Peter Hoffrogge, Peter Czurratis, Chaitanya Bakre, Mario Pacheco, Deepak Goyal\",\"doi\":\"10.31399/asm.cp.istfa2023p0448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper investigates the enhanced inspection of High Bandwidth Memory (HBM) stacks using Scanning Acoustic Microscopy (SAM). As the multi-layer structure is quite complex, sophisticated signal processing methods are employed. To improve detection capabilities and inspection time, the Synthetic Aperture Focusing Technique (SAFT) is utilized. In contrast to previous trials applying SAFT on SAM data, this contribution introduces Near Field SAFT. Reconstruction is also performed for layers between the transducer and its focus, in the near field of the transducer. This approach allows for measurements with common working distances, providing higher frequencies and improved resolution. Systematic evaluations are conducted on various measurement setups and transducers with different center frequencies and focal lengths in order to determine the most optimal measurement setup.\",\"PeriodicalId\":20443,\"journal\":{\"name\":\"Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2023p0448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2023p0448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-Field Synthetic Aperture Focusing Technique to Enhance the Inspection Capability of Multi-Layer HBM Stacks in Scanning Acoustic Microscopy
Abstract This paper investigates the enhanced inspection of High Bandwidth Memory (HBM) stacks using Scanning Acoustic Microscopy (SAM). As the multi-layer structure is quite complex, sophisticated signal processing methods are employed. To improve detection capabilities and inspection time, the Synthetic Aperture Focusing Technique (SAFT) is utilized. In contrast to previous trials applying SAFT on SAM data, this contribution introduces Near Field SAFT. Reconstruction is also performed for layers between the transducer and its focus, in the near field of the transducer. This approach allows for measurements with common working distances, providing higher frequencies and improved resolution. Systematic evaluations are conducted on various measurement setups and transducers with different center frequencies and focal lengths in order to determine the most optimal measurement setup.