{"title":"探索棕碳形成的pH依赖性:来自气溶胶颗粒和本体相溶液的实验室研究的见解","authors":"Kevin T. Jansen, Margaret A. Tolbert","doi":"10.1080/02786826.2023.2267649","DOIUrl":null,"url":null,"abstract":"AbstractLight-absorbing organic aerosol (brown carbon, BrC) can have a significant impact on the radiative balance of the Earth’s atmosphere. However there are still substantial uncertainties regarding the formation, composition, and radiative properties of BrC. In this study, we conducted laboratory experiments to investigate the pH dependence of BrC formation in both aerosol particles and bulk phase solutions. Using glyoxal, ammonia, and ammonium salts, we generated precursor solutions under varying bulk pH conditions ranging from 0.69 to 8.43. Drying the solutions either in the bulk or aerosol phase resulted in BrC formation. The resulting organic material was analyzed to determine its chemical composition and optical properties. Under the set of conditions investigated here, neutral to basic conditions of relevance to cloud water favored BrC formation for both aerosols and bulk solutions. In contrast, BrC products were formed under acidic conditions only in the aerosol phase. Due to rapid equilibration with the gas phase and evaporative losses of water, the aerosols probed here likely had extremely low pH values, well below the bulk pH of 0.69. By achieving such acidic conditions in the aerosol phase, new acid-catalyzed pathways are possible to form BrC. These findings indicate brown carbon formation is favored at both high and very low pH, and further point to the importance of using aerosol samples in studies of pH dependent chemistry of relevance to the atmosphere.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"47 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the pH dependence of brown carbon formation: Insights from laboratory studies on aerosol particles and bulk phase solutions\",\"authors\":\"Kevin T. Jansen, Margaret A. Tolbert\",\"doi\":\"10.1080/02786826.2023.2267649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractLight-absorbing organic aerosol (brown carbon, BrC) can have a significant impact on the radiative balance of the Earth’s atmosphere. However there are still substantial uncertainties regarding the formation, composition, and radiative properties of BrC. In this study, we conducted laboratory experiments to investigate the pH dependence of BrC formation in both aerosol particles and bulk phase solutions. Using glyoxal, ammonia, and ammonium salts, we generated precursor solutions under varying bulk pH conditions ranging from 0.69 to 8.43. Drying the solutions either in the bulk or aerosol phase resulted in BrC formation. The resulting organic material was analyzed to determine its chemical composition and optical properties. Under the set of conditions investigated here, neutral to basic conditions of relevance to cloud water favored BrC formation for both aerosols and bulk solutions. In contrast, BrC products were formed under acidic conditions only in the aerosol phase. Due to rapid equilibration with the gas phase and evaporative losses of water, the aerosols probed here likely had extremely low pH values, well below the bulk pH of 0.69. By achieving such acidic conditions in the aerosol phase, new acid-catalyzed pathways are possible to form BrC. These findings indicate brown carbon formation is favored at both high and very low pH, and further point to the importance of using aerosol samples in studies of pH dependent chemistry of relevance to the atmosphere.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2023.2267649\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2267649","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Probing the pH dependence of brown carbon formation: Insights from laboratory studies on aerosol particles and bulk phase solutions
AbstractLight-absorbing organic aerosol (brown carbon, BrC) can have a significant impact on the radiative balance of the Earth’s atmosphere. However there are still substantial uncertainties regarding the formation, composition, and radiative properties of BrC. In this study, we conducted laboratory experiments to investigate the pH dependence of BrC formation in both aerosol particles and bulk phase solutions. Using glyoxal, ammonia, and ammonium salts, we generated precursor solutions under varying bulk pH conditions ranging from 0.69 to 8.43. Drying the solutions either in the bulk or aerosol phase resulted in BrC formation. The resulting organic material was analyzed to determine its chemical composition and optical properties. Under the set of conditions investigated here, neutral to basic conditions of relevance to cloud water favored BrC formation for both aerosols and bulk solutions. In contrast, BrC products were formed under acidic conditions only in the aerosol phase. Due to rapid equilibration with the gas phase and evaporative losses of water, the aerosols probed here likely had extremely low pH values, well below the bulk pH of 0.69. By achieving such acidic conditions in the aerosol phase, new acid-catalyzed pathways are possible to form BrC. These findings indicate brown carbon formation is favored at both high and very low pH, and further point to the importance of using aerosol samples in studies of pH dependent chemistry of relevance to the atmosphere.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
期刊介绍:
Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation.
Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.