Gauss-Bonnet的种子真空衰变

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Ruth Gregory, Shi-Qian Hu
{"title":"Gauss-Bonnet的种子真空衰变","authors":"Ruth Gregory, Shi-Qian Hu","doi":"10.1007/jhep11(2023)072","DOIUrl":null,"url":null,"abstract":"A bstract We investigate false vacuum decay catalysed by black holes under the influence of the higher order Gauss-Bonnet term. We study both bubble nucleation and Hawking-Moss types of phase transition in arbitrary dimension. The equations of motion of “bounce” solutions in which bubbles nucleate around arbitrary dimensional black holes are found in the thin wall approximation, and the instanton action is computed. The headline result that the tunnelling action for static instantons is the difference in entropy of the seed and remnant black holes is shown to hold for arbitrary dimension. We also study the Hawking-Moss transition and find a picture similar to the Einstein case, with one curious five-dimensional exception (due to a mass gap). In four dimensions, we find as expected that the Gauss-Bonnet term only impacts topology changing transitions, i.e. when vacuum decay removes the seed black hole altogether, or in a (Hawking-Moss) transition where a black hole is created. In the former case, topology changing transitions are suppressed (for positive GB coupling α ), whereas the latter case results in an enhanced transition.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"134 16","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Seeded vacuum decay with Gauss-Bonnet\",\"authors\":\"Ruth Gregory, Shi-Qian Hu\",\"doi\":\"10.1007/jhep11(2023)072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract We investigate false vacuum decay catalysed by black holes under the influence of the higher order Gauss-Bonnet term. We study both bubble nucleation and Hawking-Moss types of phase transition in arbitrary dimension. The equations of motion of “bounce” solutions in which bubbles nucleate around arbitrary dimensional black holes are found in the thin wall approximation, and the instanton action is computed. The headline result that the tunnelling action for static instantons is the difference in entropy of the seed and remnant black holes is shown to hold for arbitrary dimension. We also study the Hawking-Moss transition and find a picture similar to the Einstein case, with one curious five-dimensional exception (due to a mass gap). In four dimensions, we find as expected that the Gauss-Bonnet term only impacts topology changing transitions, i.e. when vacuum decay removes the seed black hole altogether, or in a (Hawking-Moss) transition where a black hole is created. In the former case, topology changing transitions are suppressed (for positive GB coupling α ), whereas the latter case results in an enhanced transition.\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"134 16\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)072\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)072","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 4

摘要

摘要研究了高阶高斯-博内项影响下黑洞催化的假真空衰变。我们研究了任意维度的气泡成核和霍金-莫斯相变类型。在薄壁近似中得到了气泡在任意维度黑洞周围成核的“弹跳”解的运动方程,并计算了瞬时作用。静态瞬子的隧穿作用是种子黑洞和残余黑洞熵的差异,这一结果在任意维度上都是成立的。我们还研究了霍金-莫斯跃迁,发现了一个类似于爱因斯坦情况的图像,但有一个奇怪的五维例外(由于质量间隙)。在四维空间中,我们发现正如预期的那样,高斯-博内项仅影响拓扑变化跃迁,即当真空衰变完全消除种子黑洞时,或者在黑洞产生的(霍金-莫斯)跃迁中。在前一种情况下,拓扑变化转换被抑制(对于正GB耦合α),而后一种情况导致增强的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeded vacuum decay with Gauss-Bonnet
A bstract We investigate false vacuum decay catalysed by black holes under the influence of the higher order Gauss-Bonnet term. We study both bubble nucleation and Hawking-Moss types of phase transition in arbitrary dimension. The equations of motion of “bounce” solutions in which bubbles nucleate around arbitrary dimensional black holes are found in the thin wall approximation, and the instanton action is computed. The headline result that the tunnelling action for static instantons is the difference in entropy of the seed and remnant black holes is shown to hold for arbitrary dimension. We also study the Hawking-Moss transition and find a picture similar to the Einstein case, with one curious five-dimensional exception (due to a mass gap). In four dimensions, we find as expected that the Gauss-Bonnet term only impacts topology changing transitions, i.e. when vacuum decay removes the seed black hole altogether, or in a (Hawking-Moss) transition where a black hole is created. In the former case, topology changing transitions are suppressed (for positive GB coupling α ), whereas the latter case results in an enhanced transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信