Mariola Moeyaert, Marzieh Dehghan-Chaleshtori, Xinyun Xu, Panpan Yang
{"title":"教育和心理学中的单例设计荟萃分析:方法论的系统回顾","authors":"Mariola Moeyaert, Marzieh Dehghan-Chaleshtori, Xinyun Xu, Panpan Yang","doi":"10.3389/frma.2023.1190362","DOIUrl":null,"url":null,"abstract":"Meta-analysis is of increasing importance as this quantitative synthesis technique has the potential to summarize a tremendous amount of research evidence, which can help making evidence-based decisions in policy, practice, and theory. This paper examines the single-case meta-analyses within the Education and Psychology fields. The amount of methodological studies related to the meta-analysis of Single-Case Experimental Designs (SCEDs) is increasing rapidly, especially in these fields. This underscores the necessity of a succinct summary to help methodologists identify areas for further development in Education and Psychology research. It also aids applied researchers and research synthesists in discerning when to use meta-analytic techniques for SCED studies based on criteria such as bias, mean squared error, 95% confidence intervals, Type I error rates, and statistical power. Based on the summary of empirical evidence from 18 reports identified through a systematic search procedure, information related to meta-analytic techniques, data generation and analysis models, design conditions, statistical properties, conditions under which the meta-analytic technique is appropriate, and the study purpose(s) were extracted. The results indicate that three-level hierarchical linear modeling is the most empirically validated SCED meta-analytic technique, and parameter bias is the most prominent statistical property investigated. A large number of primary studies (more than 30) and at least 20 measurement occasions per participant are recommended for usage of SCED meta-analysis in Education and Psychology fields.","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-case design meta-analyses in education and psychology: a systematic review of methodology\",\"authors\":\"Mariola Moeyaert, Marzieh Dehghan-Chaleshtori, Xinyun Xu, Panpan Yang\",\"doi\":\"10.3389/frma.2023.1190362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-analysis is of increasing importance as this quantitative synthesis technique has the potential to summarize a tremendous amount of research evidence, which can help making evidence-based decisions in policy, practice, and theory. This paper examines the single-case meta-analyses within the Education and Psychology fields. The amount of methodological studies related to the meta-analysis of Single-Case Experimental Designs (SCEDs) is increasing rapidly, especially in these fields. This underscores the necessity of a succinct summary to help methodologists identify areas for further development in Education and Psychology research. It also aids applied researchers and research synthesists in discerning when to use meta-analytic techniques for SCED studies based on criteria such as bias, mean squared error, 95% confidence intervals, Type I error rates, and statistical power. Based on the summary of empirical evidence from 18 reports identified through a systematic search procedure, information related to meta-analytic techniques, data generation and analysis models, design conditions, statistical properties, conditions under which the meta-analytic technique is appropriate, and the study purpose(s) were extracted. The results indicate that three-level hierarchical linear modeling is the most empirically validated SCED meta-analytic technique, and parameter bias is the most prominent statistical property investigated. A large number of primary studies (more than 30) and at least 20 measurement occasions per participant are recommended for usage of SCED meta-analysis in Education and Psychology fields.\",\"PeriodicalId\":73104,\"journal\":{\"name\":\"Frontiers in research metrics and analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in research metrics and analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frma.2023.1190362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2023.1190362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-case design meta-analyses in education and psychology: a systematic review of methodology
Meta-analysis is of increasing importance as this quantitative synthesis technique has the potential to summarize a tremendous amount of research evidence, which can help making evidence-based decisions in policy, practice, and theory. This paper examines the single-case meta-analyses within the Education and Psychology fields. The amount of methodological studies related to the meta-analysis of Single-Case Experimental Designs (SCEDs) is increasing rapidly, especially in these fields. This underscores the necessity of a succinct summary to help methodologists identify areas for further development in Education and Psychology research. It also aids applied researchers and research synthesists in discerning when to use meta-analytic techniques for SCED studies based on criteria such as bias, mean squared error, 95% confidence intervals, Type I error rates, and statistical power. Based on the summary of empirical evidence from 18 reports identified through a systematic search procedure, information related to meta-analytic techniques, data generation and analysis models, design conditions, statistical properties, conditions under which the meta-analytic technique is appropriate, and the study purpose(s) were extracted. The results indicate that three-level hierarchical linear modeling is the most empirically validated SCED meta-analytic technique, and parameter bias is the most prominent statistical property investigated. A large number of primary studies (more than 30) and at least 20 measurement occasions per participant are recommended for usage of SCED meta-analysis in Education and Psychology fields.