{"title":"使用基于 FeO3 的单酯纳米流体提高 TUK 压板的闪蒸阈值","authors":"Jean Lambert Jiosseu, Ghislain Mengata Mengounou, Emeric Tchamdjio Nkouetcha, Adolphe Moukengue Imano","doi":"10.1049/nde2.12070","DOIUrl":null,"url":null,"abstract":"<p>This article deals with the improvement of the dielectric properties of TUK cellulose paper by impregnation. The experiment was carried out using a nanofluid based on vegetable oil esters and iron nanoparticles (FeO<sub>3</sub>). The insulating liquids used are palm kernel oil methyl ester (PKOME) and castor oil methyl ester (COME). The evaluation of the improvement is based on the analysis of the flashover voltage of the creeping discharges produced on the immersed paper. The tests were carried out under a positive lightning impulse voltage and for two electrode configurations. The concentrations of nanoparticles used in the experiment are 0.10 wt.%, 0.15 wt.% and 0.20 wt.%. The experimental results show that the 0.10 wt.% concentration gives the best improvement for the two electrode configurations used. The improvements are 53% for the inclined tip and 56.90% for the vertical tip in the case of COME + FeO<sub>3</sub>. For PKOME + FeO<sub>3</sub>, the results are 59.90% and 64.60%, respectively, for the two configurations.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 2","pages":"78-87"},"PeriodicalIF":3.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12070","citationCount":"0","resultStr":"{\"title\":\"Improvement of the flashover threshold of TUK pressboard by using FeO3-based nanofluid of monoesters\",\"authors\":\"Jean Lambert Jiosseu, Ghislain Mengata Mengounou, Emeric Tchamdjio Nkouetcha, Adolphe Moukengue Imano\",\"doi\":\"10.1049/nde2.12070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article deals with the improvement of the dielectric properties of TUK cellulose paper by impregnation. The experiment was carried out using a nanofluid based on vegetable oil esters and iron nanoparticles (FeO<sub>3</sub>). The insulating liquids used are palm kernel oil methyl ester (PKOME) and castor oil methyl ester (COME). The evaluation of the improvement is based on the analysis of the flashover voltage of the creeping discharges produced on the immersed paper. The tests were carried out under a positive lightning impulse voltage and for two electrode configurations. The concentrations of nanoparticles used in the experiment are 0.10 wt.%, 0.15 wt.% and 0.20 wt.%. The experimental results show that the 0.10 wt.% concentration gives the best improvement for the two electrode configurations used. The improvements are 53% for the inclined tip and 56.90% for the vertical tip in the case of COME + FeO<sub>3</sub>. For PKOME + FeO<sub>3</sub>, the results are 59.90% and 64.60%, respectively, for the two configurations.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":\"7 2\",\"pages\":\"78-87\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improvement of the flashover threshold of TUK pressboard by using FeO3-based nanofluid of monoesters
This article deals with the improvement of the dielectric properties of TUK cellulose paper by impregnation. The experiment was carried out using a nanofluid based on vegetable oil esters and iron nanoparticles (FeO3). The insulating liquids used are palm kernel oil methyl ester (PKOME) and castor oil methyl ester (COME). The evaluation of the improvement is based on the analysis of the flashover voltage of the creeping discharges produced on the immersed paper. The tests were carried out under a positive lightning impulse voltage and for two electrode configurations. The concentrations of nanoparticles used in the experiment are 0.10 wt.%, 0.15 wt.% and 0.20 wt.%. The experimental results show that the 0.10 wt.% concentration gives the best improvement for the two electrode configurations used. The improvements are 53% for the inclined tip and 56.90% for the vertical tip in the case of COME + FeO3. For PKOME + FeO3, the results are 59.90% and 64.60%, respectively, for the two configurations.