Nermin Hande AVCİOGLU, Sezen BILEN OZYUREK, Işıl SEYİS BİLKAY
{"title":"热杀赭曲霉NRRL 3174圆盘作为生物吸附剂去除石油","authors":"Nermin Hande AVCİOGLU, Sezen BILEN OZYUREK, Işıl SEYİS BİLKAY","doi":"10.17350/hjse19030000310","DOIUrl":null,"url":null,"abstract":"The purpose of this work was to evaluate the petroleum sorption capacity of heat-killed fungal discs obtained from Aspergillus ochraceus strain. Effect of various parameters such as biosorbent dose (0.5g-2.5g/100mL), petroleum concentration (0.5-5%), pH (4.0-8.0), contact time (1-12h) and re-usability of biosorbent (1-6) were investigated. Accordingly, the highest biosorption capacity was obtained with 1% petroleum concentration, 1.5 g/100mL heat-killed fungal discs, 10h contact time at pH: 5.0 and room temperature. Additionally, each disc was able to actively use for at least 6 more cycles in biosorption experiments. The specific removal rate was calculated as 0.114 day−1, the rate constant and half-life period were also 1.609 day-1, t1/2 = 0.431, respectively. The kinetic study was described by the pseudo-second order model and the equilibrium modeling was found to be well fitted with Langmuir isotherm. The biosorbent(s) were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). Over 80% removal of long-chain n-alkanes by the heat-killed fungal discs was confirmed by GC-MS analysis. Since there has been no similar study investigating the sorption of petroleum with heat-killed Aspergillus ochraceous discs, this novel bio-based sorbent with its low cost, environmentally friendly and easy-to-apply properties can be used in advanced biosorption studies.","PeriodicalId":500702,"journal":{"name":"Hitite journal of science and engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of heat-killed Aspergillus ochraceus NRRL 3174 discs as biosorbent for petroleum removal\",\"authors\":\"Nermin Hande AVCİOGLU, Sezen BILEN OZYUREK, Işıl SEYİS BİLKAY\",\"doi\":\"10.17350/hjse19030000310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work was to evaluate the petroleum sorption capacity of heat-killed fungal discs obtained from Aspergillus ochraceus strain. Effect of various parameters such as biosorbent dose (0.5g-2.5g/100mL), petroleum concentration (0.5-5%), pH (4.0-8.0), contact time (1-12h) and re-usability of biosorbent (1-6) were investigated. Accordingly, the highest biosorption capacity was obtained with 1% petroleum concentration, 1.5 g/100mL heat-killed fungal discs, 10h contact time at pH: 5.0 and room temperature. Additionally, each disc was able to actively use for at least 6 more cycles in biosorption experiments. The specific removal rate was calculated as 0.114 day−1, the rate constant and half-life period were also 1.609 day-1, t1/2 = 0.431, respectively. The kinetic study was described by the pseudo-second order model and the equilibrium modeling was found to be well fitted with Langmuir isotherm. The biosorbent(s) were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). Over 80% removal of long-chain n-alkanes by the heat-killed fungal discs was confirmed by GC-MS analysis. Since there has been no similar study investigating the sorption of petroleum with heat-killed Aspergillus ochraceous discs, this novel bio-based sorbent with its low cost, environmentally friendly and easy-to-apply properties can be used in advanced biosorption studies.\",\"PeriodicalId\":500702,\"journal\":{\"name\":\"Hitite journal of science and engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hitite journal of science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17350/hjse19030000310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hitite journal of science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17350/hjse19030000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of heat-killed Aspergillus ochraceus NRRL 3174 discs as biosorbent for petroleum removal
The purpose of this work was to evaluate the petroleum sorption capacity of heat-killed fungal discs obtained from Aspergillus ochraceus strain. Effect of various parameters such as biosorbent dose (0.5g-2.5g/100mL), petroleum concentration (0.5-5%), pH (4.0-8.0), contact time (1-12h) and re-usability of biosorbent (1-6) were investigated. Accordingly, the highest biosorption capacity was obtained with 1% petroleum concentration, 1.5 g/100mL heat-killed fungal discs, 10h contact time at pH: 5.0 and room temperature. Additionally, each disc was able to actively use for at least 6 more cycles in biosorption experiments. The specific removal rate was calculated as 0.114 day−1, the rate constant and half-life period were also 1.609 day-1, t1/2 = 0.431, respectively. The kinetic study was described by the pseudo-second order model and the equilibrium modeling was found to be well fitted with Langmuir isotherm. The biosorbent(s) were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). Over 80% removal of long-chain n-alkanes by the heat-killed fungal discs was confirmed by GC-MS analysis. Since there has been no similar study investigating the sorption of petroleum with heat-killed Aspergillus ochraceous discs, this novel bio-based sorbent with its low cost, environmentally friendly and easy-to-apply properties can be used in advanced biosorption studies.