Lei Li, Tao Chen, Chao Shen, Shuo Ti, Shihan Wang, Chunlin Cai, Wen Li, Jing Luo
{"title":"近地表大气电场通过日冕物质抛射通过磁云发生变化","authors":"Lei Li, Tao Chen, Chao Shen, Shuo Ti, Shihan Wang, Chunlin Cai, Wen Li, Jing Luo","doi":"10.1186/s40562-023-00299-2","DOIUrl":null,"url":null,"abstract":"Abstract The Earth’s electrical environment is influenced by both external and internal driving factors. Internal driving factors include the global charging current produced by lightning storms, global aerosol concentrations and cloud coverage. External factors are caused by various space weather phenomena, including changes in the Sun’s magnetic field, solar flares, coronal mass ejections, and ionization changes from high-energy particles from the Sun and galactic cosmic rays. This study focuses on the cosmic ray intensity changes observed at the OULU Station and the vertical atmospheric electric field changes observed at the Azores and Studenec stations during a solar activity event in September 2017. The results indicate that the atmospheric electric field at the two stations (Azores and Studenec) simultaneously decreased by 80% and 120% of the mean atmospheric electric field value, respectively, during the same time as the significant decrease in cosmic ray intensity. The linear correlation coefficient between the decreased atmospheric electric field measured at these two stations was 0.60, indicating a global effect from the shocks and magnetic clouds associated with coronal mass ejections on atmospheric electricity. Finally, this study describes shock waves and magnetic clouds that impede the propagation of galactic cosmic rays, resulting in a decrease in ionospheric potential and atmospheric electric field.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"50 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-surface atmospheric electric field changes through magnetic clouds via coronal mass ejections\",\"authors\":\"Lei Li, Tao Chen, Chao Shen, Shuo Ti, Shihan Wang, Chunlin Cai, Wen Li, Jing Luo\",\"doi\":\"10.1186/s40562-023-00299-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Earth’s electrical environment is influenced by both external and internal driving factors. Internal driving factors include the global charging current produced by lightning storms, global aerosol concentrations and cloud coverage. External factors are caused by various space weather phenomena, including changes in the Sun’s magnetic field, solar flares, coronal mass ejections, and ionization changes from high-energy particles from the Sun and galactic cosmic rays. This study focuses on the cosmic ray intensity changes observed at the OULU Station and the vertical atmospheric electric field changes observed at the Azores and Studenec stations during a solar activity event in September 2017. The results indicate that the atmospheric electric field at the two stations (Azores and Studenec) simultaneously decreased by 80% and 120% of the mean atmospheric electric field value, respectively, during the same time as the significant decrease in cosmic ray intensity. The linear correlation coefficient between the decreased atmospheric electric field measured at these two stations was 0.60, indicating a global effect from the shocks and magnetic clouds associated with coronal mass ejections on atmospheric electricity. Finally, this study describes shock waves and magnetic clouds that impede the propagation of galactic cosmic rays, resulting in a decrease in ionospheric potential and atmospheric electric field.\",\"PeriodicalId\":48596,\"journal\":{\"name\":\"Geoscience Letters\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40562-023-00299-2\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40562-023-00299-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Near-surface atmospheric electric field changes through magnetic clouds via coronal mass ejections
Abstract The Earth’s electrical environment is influenced by both external and internal driving factors. Internal driving factors include the global charging current produced by lightning storms, global aerosol concentrations and cloud coverage. External factors are caused by various space weather phenomena, including changes in the Sun’s magnetic field, solar flares, coronal mass ejections, and ionization changes from high-energy particles from the Sun and galactic cosmic rays. This study focuses on the cosmic ray intensity changes observed at the OULU Station and the vertical atmospheric electric field changes observed at the Azores and Studenec stations during a solar activity event in September 2017. The results indicate that the atmospheric electric field at the two stations (Azores and Studenec) simultaneously decreased by 80% and 120% of the mean atmospheric electric field value, respectively, during the same time as the significant decrease in cosmic ray intensity. The linear correlation coefficient between the decreased atmospheric electric field measured at these two stations was 0.60, indicating a global effect from the shocks and magnetic clouds associated with coronal mass ejections on atmospheric electricity. Finally, this study describes shock waves and magnetic clouds that impede the propagation of galactic cosmic rays, resulting in a decrease in ionospheric potential and atmospheric electric field.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.