{"title":"遥感变化检测的Barlow孪生自监督预训练","authors":"Wenqing Feng, Jihui Tu, Chenhao Sun, Wei Xu","doi":"10.1080/2150704x.2023.2264493","DOIUrl":null,"url":null,"abstract":"ABSTRACTRemote sensing change detection (CD) methods that rely on supervised deep convolutional neural networks require large-scale labelled data, which is time-consuming and laborious to collect and label, especially for bi-temporal samples containing changed areas. Conversely, acquiring a large volume of unannotated images is relatively easy. Recently, self-supervised contrastive learning has emerged as a promising method for learning from unannotated images, thereby reducing the need for annotation. However, most existing methods employ random values or ImageNet pre-trained models to initialize their encoders and lack prior knowledge tailored to the demands of CD tasks, thus constraining the performance of CD models. To address these challenges, we propose a novel Barlow Twins self-supervised pre-training method for CD (BTSCD), which uses absolute feature differences to directly learn distinct representations associated with changed regions from unlabelled bi-temporal remote sensing images in a self-supervised manner. Experimental results obtained using two publicly available CD datasets demonstrate that our proposed approach exhibits competitive quantitative performance. Moreover, the proposed method achieved final results superior to those of existing state-of-the-art methods. Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the National Natural Science Foundation of China under Grant Nos. 42101358.","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":"63 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Barlow twin self-supervised pre-training for remote sensing change detection\",\"authors\":\"Wenqing Feng, Jihui Tu, Chenhao Sun, Wei Xu\",\"doi\":\"10.1080/2150704x.2023.2264493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTRemote sensing change detection (CD) methods that rely on supervised deep convolutional neural networks require large-scale labelled data, which is time-consuming and laborious to collect and label, especially for bi-temporal samples containing changed areas. Conversely, acquiring a large volume of unannotated images is relatively easy. Recently, self-supervised contrastive learning has emerged as a promising method for learning from unannotated images, thereby reducing the need for annotation. However, most existing methods employ random values or ImageNet pre-trained models to initialize their encoders and lack prior knowledge tailored to the demands of CD tasks, thus constraining the performance of CD models. To address these challenges, we propose a novel Barlow Twins self-supervised pre-training method for CD (BTSCD), which uses absolute feature differences to directly learn distinct representations associated with changed regions from unlabelled bi-temporal remote sensing images in a self-supervised manner. Experimental results obtained using two publicly available CD datasets demonstrate that our proposed approach exhibits competitive quantitative performance. Moreover, the proposed method achieved final results superior to those of existing state-of-the-art methods. Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the National Natural Science Foundation of China under Grant Nos. 42101358.\",\"PeriodicalId\":49132,\"journal\":{\"name\":\"Remote Sensing Letters\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2150704x.2023.2264493\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2150704x.2023.2264493","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Barlow twin self-supervised pre-training for remote sensing change detection
ABSTRACTRemote sensing change detection (CD) methods that rely on supervised deep convolutional neural networks require large-scale labelled data, which is time-consuming and laborious to collect and label, especially for bi-temporal samples containing changed areas. Conversely, acquiring a large volume of unannotated images is relatively easy. Recently, self-supervised contrastive learning has emerged as a promising method for learning from unannotated images, thereby reducing the need for annotation. However, most existing methods employ random values or ImageNet pre-trained models to initialize their encoders and lack prior knowledge tailored to the demands of CD tasks, thus constraining the performance of CD models. To address these challenges, we propose a novel Barlow Twins self-supervised pre-training method for CD (BTSCD), which uses absolute feature differences to directly learn distinct representations associated with changed regions from unlabelled bi-temporal remote sensing images in a self-supervised manner. Experimental results obtained using two publicly available CD datasets demonstrate that our proposed approach exhibits competitive quantitative performance. Moreover, the proposed method achieved final results superior to those of existing state-of-the-art methods. Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the National Natural Science Foundation of China under Grant Nos. 42101358.
期刊介绍:
Remote Sensing Letters is a peer-reviewed international journal committed to the rapid publication of articles advancing the science and technology of remote sensing as well as its applications. The journal originates from a successful section, of the same name, contained in the International Journal of Remote Sensing from 1983 –2009. Articles may address any aspect of remote sensing of relevance to the journal’s readership, including – but not limited to – developments in sensor technology, advances in image processing and Earth-orientated applications, whether terrestrial, oceanic or atmospheric. Articles should make a positive impact on the subject by either contributing new and original information or through provision of theoretical, methodological or commentary material that acts to strengthen the subject.