{"title":"Tornheim和Euler型二重级数的计算公式","authors":"Emre ÇAY, Mümün CAN, Levent KARGIN","doi":"10.15672/hujms.1165578","DOIUrl":null,"url":null,"abstract":"We give closed-form evaluation formulas for the real and imaginary parts of the series $\\sum_{m,n=1}^{\\infty}\\frac{e^{2\\pi i\\left( mx-ny\\right) }} {m^{p}n^{r}\\left( mc+n\\right) ^{q}},$ $c\\in\\mathbb{N},$ in terms of certain zeta values.\\textbf{ }Particular choices of $x$ and $y$ lead evaluation formulas for some Tornheim type $\\sum_{m,n=1}^{\\infty}\\frac{1}{m^{p}% n^{r}\\left( mc+n\\right) ^{q}}$ and Euler type $\\sum_{m,n=1}^{\\infty}\\frac {1}{n^{p}\\left( mc+n\\right) ^{q}}$ double series and their alternating analogues.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"38 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation formulas for Tornheim and Euler type double series\",\"authors\":\"Emre ÇAY, Mümün CAN, Levent KARGIN\",\"doi\":\"10.15672/hujms.1165578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give closed-form evaluation formulas for the real and imaginary parts of the series $\\\\sum_{m,n=1}^{\\\\infty}\\\\frac{e^{2\\\\pi i\\\\left( mx-ny\\\\right) }} {m^{p}n^{r}\\\\left( mc+n\\\\right) ^{q}},$ $c\\\\in\\\\mathbb{N},$ in terms of certain zeta values.\\\\textbf{ }Particular choices of $x$ and $y$ lead evaluation formulas for some Tornheim type $\\\\sum_{m,n=1}^{\\\\infty}\\\\frac{1}{m^{p}% n^{r}\\\\left( mc+n\\\\right) ^{q}}$ and Euler type $\\\\sum_{m,n=1}^{\\\\infty}\\\\frac {1}{n^{p}\\\\left( mc+n\\\\right) ^{q}}$ double series and their alternating analogues.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1165578\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15672/hujms.1165578","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Evaluation formulas for Tornheim and Euler type double series
We give closed-form evaluation formulas for the real and imaginary parts of the series $\sum_{m,n=1}^{\infty}\frac{e^{2\pi i\left( mx-ny\right) }} {m^{p}n^{r}\left( mc+n\right) ^{q}},$ $c\in\mathbb{N},$ in terms of certain zeta values.\textbf{ }Particular choices of $x$ and $y$ lead evaluation formulas for some Tornheim type $\sum_{m,n=1}^{\infty}\frac{1}{m^{p}% n^{r}\left( mc+n\right) ^{q}}$ and Euler type $\sum_{m,n=1}^{\infty}\frac {1}{n^{p}\left( mc+n\right) ^{q}}$ double series and their alternating analogues.
期刊介绍:
Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics.
We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.