{"title":"CanESM5大集合模拟中的暖北极-冷北美格局:欧亚大陆的影响和内部变率造成的不确定性","authors":"Bin Yu, Hai Lin","doi":"10.1007/s00382-023-06966-6","DOIUrl":null,"url":null,"abstract":"Abstract This study examines the warm Arctic-cold North American pattern (WACNA) and its connection with the warm Arctic-cold Eurasia pattern (WACE) using ERA5 reanalysis and a 50-member ensemble of historical climate simulations produced by CanESM5, the Canadian model participated in CMIP6. The results indicate that a negative WACE-like pattern typically precedes a positive WACNA pattern by one month, and the presence of a negative Asian-Bering-North American (ABNA)-like circulation pattern connects Eurasia and North America, along with the Pacific-North American (PNA)-like pattern. The negative ABNA-like pattern can be attributed to anomalous heating in southern Siberia, which is associated with the negative WACE pattern and its featured Eurasian warming. The negative PNA-like pattern is influenced by negative SST anomalies in the tropical Pacific, resembling tropical ENSO variability. Anomalous temperature advection in the lower troposphere follows the circulation anomaly, which supports the formation of WACNA. Conversely, processes with circulation anomalies of opposite sign result in a negative WACNA pattern. The tropical ENSO variability does not significantly impact the WACNA pattern and its linkage with WACE. CanESM5 simulates the WACNA pattern and WACE-WACNA connection well, with some discrepancies in the magnitude of anomalies compared to ERA5 reanalysis. The uncertainty in the simulated WACNA pattern due to internal climate variability is dominated by two modes of inter-member variability: a southeast-northwest phase shift and a local variation in amplitude.","PeriodicalId":10165,"journal":{"name":"Climate Dynamics","volume":"56 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The warm Arctic-cold north american pattern in CanESM5 large ensemble simulations: Eurasian influence and uncertainty due to internal variability\",\"authors\":\"Bin Yu, Hai Lin\",\"doi\":\"10.1007/s00382-023-06966-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study examines the warm Arctic-cold North American pattern (WACNA) and its connection with the warm Arctic-cold Eurasia pattern (WACE) using ERA5 reanalysis and a 50-member ensemble of historical climate simulations produced by CanESM5, the Canadian model participated in CMIP6. The results indicate that a negative WACE-like pattern typically precedes a positive WACNA pattern by one month, and the presence of a negative Asian-Bering-North American (ABNA)-like circulation pattern connects Eurasia and North America, along with the Pacific-North American (PNA)-like pattern. The negative ABNA-like pattern can be attributed to anomalous heating in southern Siberia, which is associated with the negative WACE pattern and its featured Eurasian warming. The negative PNA-like pattern is influenced by negative SST anomalies in the tropical Pacific, resembling tropical ENSO variability. Anomalous temperature advection in the lower troposphere follows the circulation anomaly, which supports the formation of WACNA. Conversely, processes with circulation anomalies of opposite sign result in a negative WACNA pattern. The tropical ENSO variability does not significantly impact the WACNA pattern and its linkage with WACE. CanESM5 simulates the WACNA pattern and WACE-WACNA connection well, with some discrepancies in the magnitude of anomalies compared to ERA5 reanalysis. The uncertainty in the simulated WACNA pattern due to internal climate variability is dominated by two modes of inter-member variability: a southeast-northwest phase shift and a local variation in amplitude.\",\"PeriodicalId\":10165,\"journal\":{\"name\":\"Climate Dynamics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00382-023-06966-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00382-023-06966-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The warm Arctic-cold north american pattern in CanESM5 large ensemble simulations: Eurasian influence and uncertainty due to internal variability
Abstract This study examines the warm Arctic-cold North American pattern (WACNA) and its connection with the warm Arctic-cold Eurasia pattern (WACE) using ERA5 reanalysis and a 50-member ensemble of historical climate simulations produced by CanESM5, the Canadian model participated in CMIP6. The results indicate that a negative WACE-like pattern typically precedes a positive WACNA pattern by one month, and the presence of a negative Asian-Bering-North American (ABNA)-like circulation pattern connects Eurasia and North America, along with the Pacific-North American (PNA)-like pattern. The negative ABNA-like pattern can be attributed to anomalous heating in southern Siberia, which is associated with the negative WACE pattern and its featured Eurasian warming. The negative PNA-like pattern is influenced by negative SST anomalies in the tropical Pacific, resembling tropical ENSO variability. Anomalous temperature advection in the lower troposphere follows the circulation anomaly, which supports the formation of WACNA. Conversely, processes with circulation anomalies of opposite sign result in a negative WACNA pattern. The tropical ENSO variability does not significantly impact the WACNA pattern and its linkage with WACE. CanESM5 simulates the WACNA pattern and WACE-WACNA connection well, with some discrepancies in the magnitude of anomalies compared to ERA5 reanalysis. The uncertainty in the simulated WACNA pattern due to internal climate variability is dominated by two modes of inter-member variability: a southeast-northwest phase shift and a local variation in amplitude.
期刊介绍:
The international journal Climate Dynamics provides for the publication of high-quality research on all aspects of the dynamics of the global climate system.
Coverage includes original paleoclimatic, diagnostic, analytical and numerical modeling research on the structure and behavior of the atmosphere, oceans, cryosphere, biomass and land surface as interacting components of the dynamics of global climate. Contributions are focused on selected aspects of climate dynamics on particular scales of space or time.
The journal also publishes reviews and papers emphasizing an integrated view of the physical and biogeochemical processes governing climate and climate change.