{"title":"缺陷宽度对含腐蚀缺陷复合修复管道爆破能力影响的有限元分析","authors":"Rodrigo Silva, Wenxing Zhou","doi":"10.1115/1.4063889","DOIUrl":null,"url":null,"abstract":"Abstract The present study investigates the effect of the defect width on the burst capacity of corroded pipelines repaired with fiber reinforced polymer composite. Parametric finite element analyses are carried out to evaluate the burst capacities of composite-repaired pipes containing localized and full-circumferential corrosion defects. The analysis results indicate that burst capacities of composite-repaired pipes containing localized defects can be markedly lower than those of composite-repaired pipes with full-circumferential defects. The burst capacity model derived from the design equation recommended in the ASME PCC-2 code is found to be non-conservative for composite-repaired pipes with localized defects based on the parametric finite element analyses. An empirical equation for the defect width correction factor is then developed and shown to be highly effective in improving the predictive accuracy of the PCC-2 burst capacity model.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":"40 9","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation Of The Defect Width Effect On The Burst Capacity Of Composite-Repaired Pipelines With Corrosion Defects Using Finite Element Analysis\",\"authors\":\"Rodrigo Silva, Wenxing Zhou\",\"doi\":\"10.1115/1.4063889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present study investigates the effect of the defect width on the burst capacity of corroded pipelines repaired with fiber reinforced polymer composite. Parametric finite element analyses are carried out to evaluate the burst capacities of composite-repaired pipes containing localized and full-circumferential corrosion defects. The analysis results indicate that burst capacities of composite-repaired pipes containing localized defects can be markedly lower than those of composite-repaired pipes with full-circumferential defects. The burst capacity model derived from the design equation recommended in the ASME PCC-2 code is found to be non-conservative for composite-repaired pipes with localized defects based on the parametric finite element analyses. An empirical equation for the defect width correction factor is then developed and shown to be highly effective in improving the predictive accuracy of the PCC-2 burst capacity model.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\"40 9\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063889\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063889","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation Of The Defect Width Effect On The Burst Capacity Of Composite-Repaired Pipelines With Corrosion Defects Using Finite Element Analysis
Abstract The present study investigates the effect of the defect width on the burst capacity of corroded pipelines repaired with fiber reinforced polymer composite. Parametric finite element analyses are carried out to evaluate the burst capacities of composite-repaired pipes containing localized and full-circumferential corrosion defects. The analysis results indicate that burst capacities of composite-repaired pipes containing localized defects can be markedly lower than those of composite-repaired pipes with full-circumferential defects. The burst capacity model derived from the design equation recommended in the ASME PCC-2 code is found to be non-conservative for composite-repaired pipes with localized defects based on the parametric finite element analyses. An empirical equation for the defect width correction factor is then developed and shown to be highly effective in improving the predictive accuracy of the PCC-2 burst capacity model.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.