{"title":"零电压开关改进升压变换器","authors":"Felix A. Himmelstoss","doi":"10.37394/232016.2023.18.21","DOIUrl":null,"url":null,"abstract":"Changing the position of the capacitor from the output to the position between the positive output and input connectors, leads to an interesting modification of the traditional Boost converter. The inrush current, when the converter is applied to a stable voltage source e.g. batteries in cars or a battery-buffered DC micro-grid, is suppressed, and the voltage stress across the capacitor is reduced. To reduce the switching losses and to reduce the disturbances caused by fast voltage rise- and fall-times, a zero voltage switching (ZVS) concept is applied and explained step by step and some interesting aspects of the converter are shown. All explanations are supported by calculations and simulations done with LTSpice.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":"35 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero Voltage Switching Modified Boost Converter\",\"authors\":\"Felix A. Himmelstoss\",\"doi\":\"10.37394/232016.2023.18.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changing the position of the capacitor from the output to the position between the positive output and input connectors, leads to an interesting modification of the traditional Boost converter. The inrush current, when the converter is applied to a stable voltage source e.g. batteries in cars or a battery-buffered DC micro-grid, is suppressed, and the voltage stress across the capacitor is reduced. To reduce the switching losses and to reduce the disturbances caused by fast voltage rise- and fall-times, a zero voltage switching (ZVS) concept is applied and explained step by step and some interesting aspects of the converter are shown. All explanations are supported by calculations and simulations done with LTSpice.\",\"PeriodicalId\":38993,\"journal\":{\"name\":\"WSEAS Transactions on Power Systems\",\"volume\":\"35 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232016.2023.18.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2023.18.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Changing the position of the capacitor from the output to the position between the positive output and input connectors, leads to an interesting modification of the traditional Boost converter. The inrush current, when the converter is applied to a stable voltage source e.g. batteries in cars or a battery-buffered DC micro-grid, is suppressed, and the voltage stress across the capacitor is reduced. To reduce the switching losses and to reduce the disturbances caused by fast voltage rise- and fall-times, a zero voltage switching (ZVS) concept is applied and explained step by step and some interesting aspects of the converter are shown. All explanations are supported by calculations and simulations done with LTSpice.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.