结合近边X射线吸收精细结构光谱、原子力显微镜和纳米压痕研究LiNi0.6Co0.2Mn0.2O2阴极的电子结构和Li离子迁移率与模量和硬度的关系

IF 2.9 Q2 ELECTROCHEMISTRY
Florian Hausen, Niklas Scheer, Bixian Ying, Karin Kleiner
{"title":"结合近边X射线吸收精细结构光谱、原子力显微镜和纳米压痕研究LiNi0.6Co0.2Mn0.2O2阴极的电子结构和Li离子迁移率与模量和硬度的关系","authors":"Florian Hausen, Niklas Scheer, Bixian Ying, Karin Kleiner","doi":"10.1002/elsa.202300017","DOIUrl":null,"url":null,"abstract":"Abstract The electrochemical performance of cathode materials in Li‐ion batteries is reflected in macroscopic observables such as the capacity, the voltage, and the state of charge (SOC). However, the physical origin of performance parameters are atomistic processes that scale up to a macroscopic picture. Thus, revealing the function and failure of electrochemical devices requires a multiscale (and ‐time) approach using spectroscopic and microscopic techniques. In this work, we combine near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS) to determine the chemical binding state of transition metals in LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622), electrochemical strain microscopy to understand the Li‐ion mobility in such materials, and nanoindentation to relate the mechanical properties exhibited by the material to the chemical state and ion mobility. Strikingly, a clear correlation between the chemical binding, the mechanical properties, and the Li‐ion mobility is found. Thereby, the significant relation of chemo‐mechanical properties of NCM622 on a local and global scale is clearly demonstrated.","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Correlation of the electronic structure and Li‐ion mobility with modulus and hardness in LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> cathodes by combined near edge X‐ray absorption finestructure spectroscopy, atomic force microscopy, and nanoindentation\",\"authors\":\"Florian Hausen, Niklas Scheer, Bixian Ying, Karin Kleiner\",\"doi\":\"10.1002/elsa.202300017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The electrochemical performance of cathode materials in Li‐ion batteries is reflected in macroscopic observables such as the capacity, the voltage, and the state of charge (SOC). However, the physical origin of performance parameters are atomistic processes that scale up to a macroscopic picture. Thus, revealing the function and failure of electrochemical devices requires a multiscale (and ‐time) approach using spectroscopic and microscopic techniques. In this work, we combine near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS) to determine the chemical binding state of transition metals in LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622), electrochemical strain microscopy to understand the Li‐ion mobility in such materials, and nanoindentation to relate the mechanical properties exhibited by the material to the chemical state and ion mobility. Strikingly, a clear correlation between the chemical binding, the mechanical properties, and the Li‐ion mobility is found. Thereby, the significant relation of chemo‐mechanical properties of NCM622 on a local and global scale is clearly demonstrated.\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/elsa.202300017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/elsa.202300017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:锂离子电池正极材料的电化学性能主要反映在容量、电压和荷电状态等宏观观察指标上。然而,性能参数的物理起源是原子过程,可以放大到宏观图像。因此,揭示电化学装置的功能和故障需要使用光谱和微观技术的多尺度(和时间)方法。在这项工作中,我们结合了近边X射线吸收精细结构光谱(NEXAFS)来确定LiNi 0.6 Co 0.2 Mn 0.2 o2 (NCM622)中过渡金属的化学结合状态,电化学应变显微镜来了解这种材料中的锂离子迁移率,以及纳米压痕来将材料所表现出的机械性能与化学状态和离子迁移率联系起来。引人注目的是,发现了化学结合、机械性能和锂离子迁移率之间的明显相关性。因此,NCM622在局部和全局尺度上的化学力学性能的显著关系得到了清楚的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation of the electronic structure and Li‐ion mobility with modulus and hardness in LiNi0.6Co0.2Mn0.2O2 cathodes by combined near edge X‐ray absorption finestructure spectroscopy, atomic force microscopy, and nanoindentation
Abstract The electrochemical performance of cathode materials in Li‐ion batteries is reflected in macroscopic observables such as the capacity, the voltage, and the state of charge (SOC). However, the physical origin of performance parameters are atomistic processes that scale up to a macroscopic picture. Thus, revealing the function and failure of electrochemical devices requires a multiscale (and ‐time) approach using spectroscopic and microscopic techniques. In this work, we combine near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS) to determine the chemical binding state of transition metals in LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622), electrochemical strain microscopy to understand the Li‐ion mobility in such materials, and nanoindentation to relate the mechanical properties exhibited by the material to the chemical state and ion mobility. Strikingly, a clear correlation between the chemical binding, the mechanical properties, and the Li‐ion mobility is found. Thereby, the significant relation of chemo‐mechanical properties of NCM622 on a local and global scale is clearly demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信