Ilham Hamdi Alaoui, Nathalie Lemée, Françoise Le Marrec, Moussa Mebarki, Anna Cantaluppi, Delphine Favry, Abdelilah Lahmar
{"title":"氧退火气氛对Bi0.5Na0.5TiO3多晶薄膜结构、电学和储能性能的影响","authors":"Ilham Hamdi Alaoui, Nathalie Lemée, Françoise Le Marrec, Moussa Mebarki, Anna Cantaluppi, Delphine Favry, Abdelilah Lahmar","doi":"10.3390/qubs7030029","DOIUrl":null,"url":null,"abstract":"Bismuth sodium titanate (BNT) thin films were deposited on Pt/SiN substrates by Sol-Gel spin coating technique and annealed under O2 atmosphere. The microstructural, structural, and electrical properties of the obtained film were investigated. Electron microscopy scans and atomic force microscopy micrographs were used to analyze the microstructure of the films. Furthermore, energy-dispersive X-ray spectroscopy (EDX) analysis revealed a Na-deficient composition for the obtained film. X-ray diffraction and Raman spectroscopy allowed the identification of a pure perovskite BNT phase. Dielectric, ferroelectric, and leakage current measurements revealed good frequency stability of the dielectric constant and dielectric losses for BNT thin film. The results are discussed in terms of Na deficiency effects on the defect structure of BNT. Further, the film showed attractive electrostatic energy storage properties with energy density that exceeds 1.04 J/cm3 under E = 630 kV/cm.","PeriodicalId":31879,"journal":{"name":"Quantum Beam Science","volume":"23 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Oxygen Annealing Atmosphere on Structural, Electrical and Energy Storage Properties of Bi0.5Na0.5TiO3 Polycrystalline Thin Film\",\"authors\":\"Ilham Hamdi Alaoui, Nathalie Lemée, Françoise Le Marrec, Moussa Mebarki, Anna Cantaluppi, Delphine Favry, Abdelilah Lahmar\",\"doi\":\"10.3390/qubs7030029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth sodium titanate (BNT) thin films were deposited on Pt/SiN substrates by Sol-Gel spin coating technique and annealed under O2 atmosphere. The microstructural, structural, and electrical properties of the obtained film were investigated. Electron microscopy scans and atomic force microscopy micrographs were used to analyze the microstructure of the films. Furthermore, energy-dispersive X-ray spectroscopy (EDX) analysis revealed a Na-deficient composition for the obtained film. X-ray diffraction and Raman spectroscopy allowed the identification of a pure perovskite BNT phase. Dielectric, ferroelectric, and leakage current measurements revealed good frequency stability of the dielectric constant and dielectric losses for BNT thin film. The results are discussed in terms of Na deficiency effects on the defect structure of BNT. Further, the film showed attractive electrostatic energy storage properties with energy density that exceeds 1.04 J/cm3 under E = 630 kV/cm.\",\"PeriodicalId\":31879,\"journal\":{\"name\":\"Quantum Beam Science\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Beam Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/qubs7030029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Beam Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/qubs7030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Effect of Oxygen Annealing Atmosphere on Structural, Electrical and Energy Storage Properties of Bi0.5Na0.5TiO3 Polycrystalline Thin Film
Bismuth sodium titanate (BNT) thin films were deposited on Pt/SiN substrates by Sol-Gel spin coating technique and annealed under O2 atmosphere. The microstructural, structural, and electrical properties of the obtained film were investigated. Electron microscopy scans and atomic force microscopy micrographs were used to analyze the microstructure of the films. Furthermore, energy-dispersive X-ray spectroscopy (EDX) analysis revealed a Na-deficient composition for the obtained film. X-ray diffraction and Raman spectroscopy allowed the identification of a pure perovskite BNT phase. Dielectric, ferroelectric, and leakage current measurements revealed good frequency stability of the dielectric constant and dielectric losses for BNT thin film. The results are discussed in terms of Na deficiency effects on the defect structure of BNT. Further, the film showed attractive electrostatic energy storage properties with energy density that exceeds 1.04 J/cm3 under E = 630 kV/cm.