Yang Li, Xiangyin Meng, Shide Xiao, Feiyun Xu, Chi-Guhn Lee
{"title":"基于多通道变分模态分解和广义复合多尺度置换熵的起重机械系统故障诊断","authors":"Yang Li, Xiangyin Meng, Shide Xiao, Feiyun Xu, Chi-Guhn Lee","doi":"10.1177/14759217231195275","DOIUrl":null,"url":null,"abstract":"Due to the harsh working environment of hoisting machinery system, the fault information of the important components is significantly complex, which leads to the fault signals not being collected completely by using only single channel. To alleviate this problem, acoustic emission (AE) experiments are applied to collect multichannel AE signal of hoisting machinery system. Additionally, a new intelligent fault diagnosis method based on multivariate variational mode decomposition (MVMD) and generalized composite multiscale permutation entropy (GCMPE) is proposed to extract multichannel AE fault features and implement multichannel fault diagnosis of hoisting machinery system. Firstly, based on variational mode decomposition (VMD) and the idea of multichannel AE data processing, MVMD is proposed to process the original multichannel AE signals collected from hoisting machinery system, which can obtain adaptively several multichannel modal components containing discriminative information. Meanwhile, GCMPE is presented to extract the fault information of multichannel modal components obtained by MVMD, which can improve the feature extraction performance of the original multiscale permutation entropy. The experimental results demonstrate the effectiveness and superiority of the proposed method in multichannel fault diagnosis of hoisting machinery system compared with some traditional single-channel analysis and other multichannel analysis methods.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate variational mode decomposition and generalized composite multiscale permutation entropy for multichannel fault diagnosis of hoisting machinery system\",\"authors\":\"Yang Li, Xiangyin Meng, Shide Xiao, Feiyun Xu, Chi-Guhn Lee\",\"doi\":\"10.1177/14759217231195275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the harsh working environment of hoisting machinery system, the fault information of the important components is significantly complex, which leads to the fault signals not being collected completely by using only single channel. To alleviate this problem, acoustic emission (AE) experiments are applied to collect multichannel AE signal of hoisting machinery system. Additionally, a new intelligent fault diagnosis method based on multivariate variational mode decomposition (MVMD) and generalized composite multiscale permutation entropy (GCMPE) is proposed to extract multichannel AE fault features and implement multichannel fault diagnosis of hoisting machinery system. Firstly, based on variational mode decomposition (VMD) and the idea of multichannel AE data processing, MVMD is proposed to process the original multichannel AE signals collected from hoisting machinery system, which can obtain adaptively several multichannel modal components containing discriminative information. Meanwhile, GCMPE is presented to extract the fault information of multichannel modal components obtained by MVMD, which can improve the feature extraction performance of the original multiscale permutation entropy. The experimental results demonstrate the effectiveness and superiority of the proposed method in multichannel fault diagnosis of hoisting machinery system compared with some traditional single-channel analysis and other multichannel analysis methods.\",\"PeriodicalId\":51184,\"journal\":{\"name\":\"Structural Health Monitoring-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217231195275\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217231195275","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multivariate variational mode decomposition and generalized composite multiscale permutation entropy for multichannel fault diagnosis of hoisting machinery system
Due to the harsh working environment of hoisting machinery system, the fault information of the important components is significantly complex, which leads to the fault signals not being collected completely by using only single channel. To alleviate this problem, acoustic emission (AE) experiments are applied to collect multichannel AE signal of hoisting machinery system. Additionally, a new intelligent fault diagnosis method based on multivariate variational mode decomposition (MVMD) and generalized composite multiscale permutation entropy (GCMPE) is proposed to extract multichannel AE fault features and implement multichannel fault diagnosis of hoisting machinery system. Firstly, based on variational mode decomposition (VMD) and the idea of multichannel AE data processing, MVMD is proposed to process the original multichannel AE signals collected from hoisting machinery system, which can obtain adaptively several multichannel modal components containing discriminative information. Meanwhile, GCMPE is presented to extract the fault information of multichannel modal components obtained by MVMD, which can improve the feature extraction performance of the original multiscale permutation entropy. The experimental results demonstrate the effectiveness and superiority of the proposed method in multichannel fault diagnosis of hoisting machinery system compared with some traditional single-channel analysis and other multichannel analysis methods.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.