均匀温度场下粘弹性复合球体中的热空化分析

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
YaJuan Chen, XinChun Shang
{"title":"均匀温度场下粘弹性复合球体中的热空化分析","authors":"YaJuan Chen,&nbsp;XinChun Shang","doi":"10.1007/s11043-023-09630-y","DOIUrl":null,"url":null,"abstract":"<div><p>Cavity bifurcation is an important mechanism of damage and fracture failure of various materials. The thermal cavitation problem of a composite sphere composed of two kinds of viscoelastic materials subjected to a uniform temperature field was studied in this paper. Based on the finite deformation dynamics theory, a nonlinear mathematical model describing cavity movement in a composite sphere was established by employing the Kelvin–Voigt constitutive equation of thermo-viscoelasticity. Adopting the dimensionless transformation, a parametric cavitated bifurcation solution describing the cavity radius with the temperature was obtained. The dynamic variation curves of the cavity radius, which increase with external temperature, radius ratios, and material parameters, were also discussed. It was proved that the dynamic growth of an infinitely large sphere, including a small sphere, can be achieved by a finitely composite sphere.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"787 - 800"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of thermal cavitation in a viscoelastic composite sphere under a uniform temperature field\",\"authors\":\"YaJuan Chen,&nbsp;XinChun Shang\",\"doi\":\"10.1007/s11043-023-09630-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cavity bifurcation is an important mechanism of damage and fracture failure of various materials. The thermal cavitation problem of a composite sphere composed of two kinds of viscoelastic materials subjected to a uniform temperature field was studied in this paper. Based on the finite deformation dynamics theory, a nonlinear mathematical model describing cavity movement in a composite sphere was established by employing the Kelvin–Voigt constitutive equation of thermo-viscoelasticity. Adopting the dimensionless transformation, a parametric cavitated bifurcation solution describing the cavity radius with the temperature was obtained. The dynamic variation curves of the cavity radius, which increase with external temperature, radius ratios, and material parameters, were also discussed. It was proved that the dynamic growth of an infinitely large sphere, including a small sphere, can be achieved by a finitely composite sphere.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"28 3\",\"pages\":\"787 - 800\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-023-09630-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-023-09630-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

空穴分叉是各种材料损伤和断裂失效的重要机制。本文研究了由两种粘弹性材料组成的复合球体在均匀温度场作用下的热空化问题。在有限变形动力学理论的基础上,利用热粘弹性的开尔文-沃依格特(Kelvin-Voigt)构成方程,建立了描述复合球体内空穴运动的非线性数学模型。通过无量纲变换,得到了描述空腔半径随温度变化的参数化空腔分岔解。此外,还讨论了空腔半径随外部温度、半径比和材料参数而增加的动态变化曲线。研究证明,无限大球体(包括小球体)的动态增长可以通过有限复合球体来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of thermal cavitation in a viscoelastic composite sphere under a uniform temperature field

Analysis of thermal cavitation in a viscoelastic composite sphere under a uniform temperature field

Cavity bifurcation is an important mechanism of damage and fracture failure of various materials. The thermal cavitation problem of a composite sphere composed of two kinds of viscoelastic materials subjected to a uniform temperature field was studied in this paper. Based on the finite deformation dynamics theory, a nonlinear mathematical model describing cavity movement in a composite sphere was established by employing the Kelvin–Voigt constitutive equation of thermo-viscoelasticity. Adopting the dimensionless transformation, a parametric cavitated bifurcation solution describing the cavity radius with the temperature was obtained. The dynamic variation curves of the cavity radius, which increase with external temperature, radius ratios, and material parameters, were also discussed. It was proved that the dynamic growth of an infinitely large sphere, including a small sphere, can be achieved by a finitely composite sphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信