利用谱序列分布持久同源性

Álvaro Torras-Casas
{"title":"利用谱序列分布持久同源性","authors":"Álvaro Torras-Casas","doi":"10.1007/s00454-023-00549-2","DOIUrl":null,"url":null,"abstract":"We set up the theory for a distributed algorithm for computing persistent homology. For this purpose we develop linear algebra of persistence modules. We present bases of persistence modules, and give motivation as for the advantages of using them. Our focus is on developing efficient methods for the computation of homology of chains of persistence modules. Later we give a brief, self contained presentation of the Mayer-Vietoris spectral sequence. Then we study the Persistent Mayer-Vietoris spectral sequence and present a solution to the extension problem. Finally, we review PerMaViss, a method implementing these ideas. This procedure distributes simplicial data, while focusing on merging homological information.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Distributing Persistent Homology via Spectral Sequences\",\"authors\":\"Álvaro Torras-Casas\",\"doi\":\"10.1007/s00454-023-00549-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We set up the theory for a distributed algorithm for computing persistent homology. For this purpose we develop linear algebra of persistence modules. We present bases of persistence modules, and give motivation as for the advantages of using them. Our focus is on developing efficient methods for the computation of homology of chains of persistence modules. Later we give a brief, self contained presentation of the Mayer-Vietoris spectral sequence. Then we study the Persistent Mayer-Vietoris spectral sequence and present a solution to the extension problem. Finally, we review PerMaViss, a method implementing these ideas. This procedure distributes simplicial data, while focusing on merging homological information.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00549-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00549-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

建立了计算持久同调的分布式算法的理论基础。为此,我们开发了持久性模块的线性代数。介绍了持久性模块的基本原理,并给出了使用持久性模块的优点。我们的重点是开发持久模块链同源性的有效计算方法。稍后,我们给出了一个简短的,自包含的迈耶-维托里斯光谱序列的介绍。然后研究了持久Mayer-Vietoris谱序列,并给出了可拓问题的解。最后,我们回顾了PerMaViss,一个实现这些想法的方法。这一过程分布简单的数据,而重点是合并同源信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributing Persistent Homology via Spectral Sequences

Distributing Persistent Homology via Spectral Sequences
We set up the theory for a distributed algorithm for computing persistent homology. For this purpose we develop linear algebra of persistence modules. We present bases of persistence modules, and give motivation as for the advantages of using them. Our focus is on developing efficient methods for the computation of homology of chains of persistence modules. Later we give a brief, self contained presentation of the Mayer-Vietoris spectral sequence. Then we study the Persistent Mayer-Vietoris spectral sequence and present a solution to the extension problem. Finally, we review PerMaViss, a method implementing these ideas. This procedure distributes simplicial data, while focusing on merging homological information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信