{"title":"利用单原子催化剂进行二氧化碳电还原:最新进展综述","authors":"Chang Chen, Jiazhan Li, Xin Tan, Yu Zhang, Yifan Li, Chang He, Zhiyuan Xu, Chao Zhang and Chen Chen","doi":"10.1039/D3EY00150D","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical CO<small><sub>2</sub></small> reduction is an effective pathway to convert CO<small><sub>2</sub></small> into valuable fuels and chemicals, which provides a potential alternative to fossil fuel resources and plays a notable role in mitigating environmental issues and energy crises. The feasibility of the CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) hinges on the development of catalysts that feature high activity, selectivity, and stability. As a new research frontier, single-atom catalysts (SACs) have shown immense potential in the field of CO<small><sub>2</sub></small> reduction by virtue of their unique geometric/electronic structures, and have also provided new opportunities for atomic-level understanding of structure–function relationships. Therefore, this review aims to outline recent advances of SACs for CO<small><sub>2</sub></small>RR. We start by introducing the current research status and general synthesis strategies of SACs, and then shift our focus to analyzing the various regulation strategies and deciphering the structure–function relationships of SACs in the CO<small><sub>2</sub></small>RR. Finally, we propose future directions and opportunities for CO<small><sub>2</sub></small>RR-oriented SACs, while also highlighting potential challenges that may be encountered along the way.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 71-93"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00150d?page=search","citationCount":"0","resultStr":"{\"title\":\"Harnessing single-atom catalysts for CO2 electroreduction: a review of recent advances\",\"authors\":\"Chang Chen, Jiazhan Li, Xin Tan, Yu Zhang, Yifan Li, Chang He, Zhiyuan Xu, Chao Zhang and Chen Chen\",\"doi\":\"10.1039/D3EY00150D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrochemical CO<small><sub>2</sub></small> reduction is an effective pathway to convert CO<small><sub>2</sub></small> into valuable fuels and chemicals, which provides a potential alternative to fossil fuel resources and plays a notable role in mitigating environmental issues and energy crises. The feasibility of the CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) hinges on the development of catalysts that feature high activity, selectivity, and stability. As a new research frontier, single-atom catalysts (SACs) have shown immense potential in the field of CO<small><sub>2</sub></small> reduction by virtue of their unique geometric/electronic structures, and have also provided new opportunities for atomic-level understanding of structure–function relationships. Therefore, this review aims to outline recent advances of SACs for CO<small><sub>2</sub></small>RR. We start by introducing the current research status and general synthesis strategies of SACs, and then shift our focus to analyzing the various regulation strategies and deciphering the structure–function relationships of SACs in the CO<small><sub>2</sub></small>RR. Finally, we propose future directions and opportunities for CO<small><sub>2</sub></small>RR-oriented SACs, while also highlighting potential challenges that may be encountered along the way.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 1\",\"pages\":\" 71-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00150d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00150d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00150d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harnessing single-atom catalysts for CO2 electroreduction: a review of recent advances
Electrochemical CO2 reduction is an effective pathway to convert CO2 into valuable fuels and chemicals, which provides a potential alternative to fossil fuel resources and plays a notable role in mitigating environmental issues and energy crises. The feasibility of the CO2 reduction reaction (CO2RR) hinges on the development of catalysts that feature high activity, selectivity, and stability. As a new research frontier, single-atom catalysts (SACs) have shown immense potential in the field of CO2 reduction by virtue of their unique geometric/electronic structures, and have also provided new opportunities for atomic-level understanding of structure–function relationships. Therefore, this review aims to outline recent advances of SACs for CO2RR. We start by introducing the current research status and general synthesis strategies of SACs, and then shift our focus to analyzing the various regulation strategies and deciphering the structure–function relationships of SACs in the CO2RR. Finally, we propose future directions and opportunities for CO2RR-oriented SACs, while also highlighting potential challenges that may be encountered along the way.