单旋钛萃取和同位素稀释质谱法测定人尿中草甘膦的简单可靠的定量

IF 1.5 4区 农林科学 Q2 ENTOMOLOGY
Takamitsu Otake, Keisuke Nakamura, Nobuyasu Hanari
{"title":"单旋钛萃取和同位素稀释质谱法测定人尿中草甘膦的简单可靠的定量","authors":"Takamitsu Otake, Keisuke Nakamura, Nobuyasu Hanari","doi":"10.1584/jpestics.d23-030","DOIUrl":null,"url":null,"abstract":"A method of quantifying glyphosate (Gly) in human urine by means of MonoSpin TiO extraction and 9-fluorenylmethoxycarbonyl chloride (FMOC-Cl) derivatization with isotope dilution mass spectrometry (IDMS) was investigated and optimized. The method’s quantification limit under optimized conditions was 0.3 µg/kg for FMOC-Gly, which was comparable to or lower than those described in previous studies. When a spike test using human urine samples was carried out with optimized analytical conditions, the trueness for FMOC-Gly was as follows: 101.6–104.9% for a spike level of 0.5 µg/kg and 99.2–101.0% for a spike level of 30 µg/kg. The intra-day repeatability and inter-day reproducibility were <6.5%. The spike test results for validation between the “with” and “without” derivatization methods were comparable at 1 µg/kg. Our results indicate that using MonoSpin TiO extraction and FMOC-Cl derivatization with IDMS is an accurate method for analyzing Gly in human urine.","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"53 57 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple reliable quantification of glyphosate in human urine using MonoSpin TiO extraction and isotope dilution mass spectrometry\",\"authors\":\"Takamitsu Otake, Keisuke Nakamura, Nobuyasu Hanari\",\"doi\":\"10.1584/jpestics.d23-030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of quantifying glyphosate (Gly) in human urine by means of MonoSpin TiO extraction and 9-fluorenylmethoxycarbonyl chloride (FMOC-Cl) derivatization with isotope dilution mass spectrometry (IDMS) was investigated and optimized. The method’s quantification limit under optimized conditions was 0.3 µg/kg for FMOC-Gly, which was comparable to or lower than those described in previous studies. When a spike test using human urine samples was carried out with optimized analytical conditions, the trueness for FMOC-Gly was as follows: 101.6–104.9% for a spike level of 0.5 µg/kg and 99.2–101.0% for a spike level of 30 µg/kg. The intra-day repeatability and inter-day reproducibility were <6.5%. The spike test results for validation between the “with” and “without” derivatization methods were comparable at 1 µg/kg. Our results indicate that using MonoSpin TiO extraction and FMOC-Cl derivatization with IDMS is an accurate method for analyzing Gly in human urine.\",\"PeriodicalId\":16712,\"journal\":{\"name\":\"Journal of Pesticide Science\",\"volume\":\"53 57 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pesticide Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1584/jpestics.d23-030\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1584/jpestics.d23-030","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了单旋TiO萃取- 9-氟酰甲氧羰基氯(FMOC-Cl)衍生-同位素稀释质谱法(IDMS)测定人尿中草甘膦(Gly)含量的方法并进行了优化。优化条件下,FMOC-Gly的定量限为0.3µg/kg,与前人研究结果相当或更低。在优化的分析条件下,对人尿样品进行尖峰检测,FMOC-Gly的准确率为:尖峰水平为0.5µg/kg时为101.6 ~ 104.9%,尖峰水平为30µg/kg时为99.2 ~ 101.0%。日内重复性和日内重复性均<6.5%。“有”衍生化和“没有”衍生化方法之间验证的峰值测试结果在1µg/kg时具有可比性。本研究结果表明,单旋体TiO萃取和IDMS - FMOC-Cl衍生化是一种准确分析人尿中甘氨酸的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple reliable quantification of glyphosate in human urine using MonoSpin TiO extraction and isotope dilution mass spectrometry
A method of quantifying glyphosate (Gly) in human urine by means of MonoSpin TiO extraction and 9-fluorenylmethoxycarbonyl chloride (FMOC-Cl) derivatization with isotope dilution mass spectrometry (IDMS) was investigated and optimized. The method’s quantification limit under optimized conditions was 0.3 µg/kg for FMOC-Gly, which was comparable to or lower than those described in previous studies. When a spike test using human urine samples was carried out with optimized analytical conditions, the trueness for FMOC-Gly was as follows: 101.6–104.9% for a spike level of 0.5 µg/kg and 99.2–101.0% for a spike level of 30 µg/kg. The intra-day repeatability and inter-day reproducibility were <6.5%. The spike test results for validation between the “with” and “without” derivatization methods were comparable at 1 µg/kg. Our results indicate that using MonoSpin TiO extraction and FMOC-Cl derivatization with IDMS is an accurate method for analyzing Gly in human urine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pesticide Science
Journal of Pesticide Science 农林科学-昆虫学
CiteScore
4.30
自引率
4.20%
发文量
28
审稿时长
18-36 weeks
期刊介绍: The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信