泊松信道上分子通信的确定性识别

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Javad Salariseddigh;Vahid Jamali;Uzi Pereg;Holger Boche;Christian Deppe;Robert Schober
{"title":"泊松信道上分子通信的确定性识别","authors":"Mohammad Javad Salariseddigh;Vahid Jamali;Uzi Pereg;Holger Boche;Christian Deppe;Robert Schober","doi":"10.1109/TMBMC.2023.3324487","DOIUrl":null,"url":null,"abstract":"Various applications of molecular communications (MC) are event-triggered, and, as a consequence, the prevalent Shannon capacity may not be the right measure for performance assessment. Thus, in this paper, we motivate and establish the identification capacity as an alternative metric. In particular, we study deterministic identification (DI) for the discrete-time Poisson channel (DTPC), subject to an average and a peak molecule release rate constraint, which serves as a model for MC systems employing molecule counting receivers. It is established that the number of different messages that can be reliably identified for this channel scales as \n<inline-formula> <tex-math>$2^{(n\\log n)R}$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>${n}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${R}$ </tex-math></inline-formula>\n are the codeword length and coding rate, respectively. Lower and upper bounds on the DI capacity of the DTPC are developed. The obtained large capacity of the DI channel sheds light on the performance of natural DI systems such as natural olfaction, which are known for their extremely large chemical discriminatory power in biology. Furthermore, numerical results for the empirical miss-identification and false identification error rates are provided for finite length codes. This allows us to characterize the behaviour of the error rate for increasing codeword lengths, which complements our theoretically-derived scale for asymptotically large codeword lengths.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic Identification for Molecular Communications Over the Poisson Channel\",\"authors\":\"Mohammad Javad Salariseddigh;Vahid Jamali;Uzi Pereg;Holger Boche;Christian Deppe;Robert Schober\",\"doi\":\"10.1109/TMBMC.2023.3324487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various applications of molecular communications (MC) are event-triggered, and, as a consequence, the prevalent Shannon capacity may not be the right measure for performance assessment. Thus, in this paper, we motivate and establish the identification capacity as an alternative metric. In particular, we study deterministic identification (DI) for the discrete-time Poisson channel (DTPC), subject to an average and a peak molecule release rate constraint, which serves as a model for MC systems employing molecule counting receivers. It is established that the number of different messages that can be reliably identified for this channel scales as \\n<inline-formula> <tex-math>$2^{(n\\\\log n)R}$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>${n}$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>${R}$ </tex-math></inline-formula>\\n are the codeword length and coding rate, respectively. Lower and upper bounds on the DI capacity of the DTPC are developed. The obtained large capacity of the DI channel sheds light on the performance of natural DI systems such as natural olfaction, which are known for their extremely large chemical discriminatory power in biology. Furthermore, numerical results for the empirical miss-identification and false identification error rates are provided for finite length codes. This allows us to characterize the behaviour of the error rate for increasing codeword lengths, which complements our theoretically-derived scale for asymptotically large codeword lengths.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10285119/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10285119/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分子通信(MC)的各种应用都是由事件触发的,因此,流行的香农容量可能不是性能评估的正确指标。因此,在本文中,我们提出并确立了识别能力作为替代指标。特别是,我们研究了离散时间泊松信道(DTPC)的确定性识别(DI),该信道受平均分子释放率和峰值分子释放率的限制,可作为采用分子计数接收器的 MC 系统的模型。研究证明,在该信道中可以可靠识别的不同信息的数量为 $2^{(n\log n)R}$ ,其中 ${n}$ 和 ${R}$ 分别为码字长度和编码率。本文提出了 DTPC 的 DI 容量的下限和上限。DI 信道所获得的大容量揭示了自然 DI 系统(如自然嗅觉)的性能,众所周知,自然嗅觉在生物学中具有极强的化学判别能力。此外,我们还提供了有限长度编码的经验误识别率和误识别错误率的数值结果。这使我们能够描述误码率在码字长度增加时的表现,从而补充了我们从理论上推导出的渐近大码字长度的规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic Identification for Molecular Communications Over the Poisson Channel
Various applications of molecular communications (MC) are event-triggered, and, as a consequence, the prevalent Shannon capacity may not be the right measure for performance assessment. Thus, in this paper, we motivate and establish the identification capacity as an alternative metric. In particular, we study deterministic identification (DI) for the discrete-time Poisson channel (DTPC), subject to an average and a peak molecule release rate constraint, which serves as a model for MC systems employing molecule counting receivers. It is established that the number of different messages that can be reliably identified for this channel scales as $2^{(n\log n)R}$ , where ${n}$ and ${R}$ are the codeword length and coding rate, respectively. Lower and upper bounds on the DI capacity of the DTPC are developed. The obtained large capacity of the DI channel sheds light on the performance of natural DI systems such as natural olfaction, which are known for their extremely large chemical discriminatory power in biology. Furthermore, numerical results for the empirical miss-identification and false identification error rates are provided for finite length codes. This allows us to characterize the behaviour of the error rate for increasing codeword lengths, which complements our theoretically-derived scale for asymptotically large codeword lengths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信