基于二值图像和自适应量化的卷积神经网络的 MIL-STD-1553 入侵检测系统

Gianmarco Baldini;Kandeepan Sithamparanathan
{"title":"基于二值图像和自适应量化的卷积神经网络的 MIL-STD-1553 入侵检测系统","authors":"Gianmarco Baldini;Kandeepan Sithamparanathan","doi":"10.1109/LNET.2023.3324508","DOIUrl":null,"url":null,"abstract":"This letter proposes an Intrusion Detection System (IDS) for the MIL-STD-1553 serial bus protocol, which is used in the aerospace systems. This letter proposes a novel encoding scheme to transform all the traffic data of MIL-STD-1553 including header, payload and time of packet transmission to binary images, which are given as an input to a Convolutional Neural Network (CNN). The encoding scheme is based on a quantization parameter \n<inline-formula> <tex-math>$Q_{b}$ </tex-math></inline-formula>\n, which must be tuned to support the optimal attack detection performance of the algorithm. Then, this letter proposes a pre-processing adaptive step before the application of CNN to select the optimal value of \n<inline-formula> <tex-math>$Q_{b}$ </tex-math></inline-formula>\n. The proposed approach is applied on a recently published cybersecurity data set of MIL-STD-1553 traffic, where it achieves a detection accuracy of 99.31%.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 1","pages":"50-54"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrusion Detection System for MIL-STD-1553 Based on Convolutional Neural Networks With Binary Images and Adaptive Quantization\",\"authors\":\"Gianmarco Baldini;Kandeepan Sithamparanathan\",\"doi\":\"10.1109/LNET.2023.3324508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes an Intrusion Detection System (IDS) for the MIL-STD-1553 serial bus protocol, which is used in the aerospace systems. This letter proposes a novel encoding scheme to transform all the traffic data of MIL-STD-1553 including header, payload and time of packet transmission to binary images, which are given as an input to a Convolutional Neural Network (CNN). The encoding scheme is based on a quantization parameter \\n<inline-formula> <tex-math>$Q_{b}$ </tex-math></inline-formula>\\n, which must be tuned to support the optimal attack detection performance of the algorithm. Then, this letter proposes a pre-processing adaptive step before the application of CNN to select the optimal value of \\n<inline-formula> <tex-math>$Q_{b}$ </tex-math></inline-formula>\\n. The proposed approach is applied on a recently published cybersecurity data set of MIL-STD-1553 traffic, where it achieves a detection accuracy of 99.31%.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 1\",\"pages\":\"50-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10285479/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10285479/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这封信针对航空航天系统中使用的 MIL-STD-1553 串行总线协议提出了一种入侵检测系统 (IDS)。本文提出了一种新颖的编码方案,可将 MIL-STD-1553 的所有流量数据(包括包头、有效载荷和数据包传输时间)转换为二进制图像,并将其作为卷积神经网络(CNN)的输入。编码方案基于量化参数 $Q_{b}$ ,必须对该参数进行调整,以支持算法的最佳攻击检测性能。因此,本文提出了在应用 CNN 之前进行预处理的自适应步骤,以选择最优的 $Q_{b}$ 值。所提出的方法被应用于最近发布的 MIL-STD-1553 流量网络安全数据集,其检测准确率达到 99.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion Detection System for MIL-STD-1553 Based on Convolutional Neural Networks With Binary Images and Adaptive Quantization
This letter proposes an Intrusion Detection System (IDS) for the MIL-STD-1553 serial bus protocol, which is used in the aerospace systems. This letter proposes a novel encoding scheme to transform all the traffic data of MIL-STD-1553 including header, payload and time of packet transmission to binary images, which are given as an input to a Convolutional Neural Network (CNN). The encoding scheme is based on a quantization parameter $Q_{b}$ , which must be tuned to support the optimal attack detection performance of the algorithm. Then, this letter proposes a pre-processing adaptive step before the application of CNN to select the optimal value of $Q_{b}$ . The proposed approach is applied on a recently published cybersecurity data set of MIL-STD-1553 traffic, where it achieves a detection accuracy of 99.31%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信