利用修正lupa - kantrovich算子保持指数增长函数的方法

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Neha Kajla, Naokant Deo
{"title":"利用修正lupa<e:1> - kantrovich算子保持指数增长函数的方法","authors":"Neha Kajla, Naokant Deo","doi":"10.1080/01630563.2023.2263977","DOIUrl":null,"url":null,"abstract":"AbstractAs part of this study, we propose a modification of the so-known Lupaş-Kantrovich that preserve exponential function e−x. To support this claim, we estimate the convergence rate of the operators in terms of both the usual and exponential modulus of continuity. Our analysis also includes a global estimate and quantitative Voronovskaya results. Demonstrating the effectiveness of modified operators, we provided a result and supporting graphs.KEYWORDS: Exponential functionsrate of convergenceVoronovoskaya theoremMATHEMATICS SUBJECT CLASSIFICATION: 41A2541A36 Disclosure statementThis work has no conflicts of interest.Additional informationFundingCSIR is funding this research with Reference No:08/133(0021)/2018-EMR-1 for the first author.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"41 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to preserve functions with exponential growth by using modified Lupaş-Kantrovich operators\",\"authors\":\"Neha Kajla, Naokant Deo\",\"doi\":\"10.1080/01630563.2023.2263977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractAs part of this study, we propose a modification of the so-known Lupaş-Kantrovich that preserve exponential function e−x. To support this claim, we estimate the convergence rate of the operators in terms of both the usual and exponential modulus of continuity. Our analysis also includes a global estimate and quantitative Voronovskaya results. Demonstrating the effectiveness of modified operators, we provided a result and supporting graphs.KEYWORDS: Exponential functionsrate of convergenceVoronovoskaya theoremMATHEMATICS SUBJECT CLASSIFICATION: 41A2541A36 Disclosure statementThis work has no conflicts of interest.Additional informationFundingCSIR is funding this research with Reference No:08/133(0021)/2018-EMR-1 for the first author.\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2263977\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2263977","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要作为本研究的一部分,我们提出了对已知的lupa - kantrovich的修正,该修正保留了指数函数e - x。为了支持这一说法,我们估计了算子的收敛速度在通常和指数模的连续性。我们的分析还包括全球估计和定量Voronovskaya结果。为了证明修正算子的有效性,我们给出了一个结果和支持图。关键词:指数函数收敛率evoronovoskaya定理数学学科分类:41A2541A36披露声明本工作无利益冲突。csir资助本研究,第一作者参考文献号:08/133(0021)/2018-EMR-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to preserve functions with exponential growth by using modified Lupaş-Kantrovich operators
AbstractAs part of this study, we propose a modification of the so-known Lupaş-Kantrovich that preserve exponential function e−x. To support this claim, we estimate the convergence rate of the operators in terms of both the usual and exponential modulus of continuity. Our analysis also includes a global estimate and quantitative Voronovskaya results. Demonstrating the effectiveness of modified operators, we provided a result and supporting graphs.KEYWORDS: Exponential functionsrate of convergenceVoronovoskaya theoremMATHEMATICS SUBJECT CLASSIFICATION: 41A2541A36 Disclosure statementThis work has no conflicts of interest.Additional informationFundingCSIR is funding this research with Reference No:08/133(0021)/2018-EMR-1 for the first author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信