外科口罩对发声练习产生的呼气气雾和飞沫的过滤效率

IF 2.8 4区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL
Alicja Szczepanska, Joshua Harrison, Brian Saccente-Kennedy, Justice Archer, Natalie A. Watson, Christopher M. Orton, William J. Browne, Ruth Epstein, James D. Calder, Pallav L. Shah, Declan Costello, Bryan R. Bzdek, Jonathan P. Reid
{"title":"外科口罩对发声练习产生的呼气气雾和飞沫的过滤效率","authors":"Alicja Szczepanska, Joshua Harrison, Brian Saccente-Kennedy, Justice Archer, Natalie A. Watson, Christopher M. Orton, William J. Browne, Ruth Epstein, James D. Calder, Pallav L. Shah, Declan Costello, Bryan R. Bzdek, Jonathan P. Reid","doi":"10.1080/02786826.2023.2267689","DOIUrl":null,"url":null,"abstract":"AbstractTransmission of an airborne disease can occur when an individual exhales respiratory particles that contain infectious pathogens. Surgical face masks are often used to reduce the amount of respiratory aerosol emitted into the environment by an individual while also lowering the concentration of particles the individual inhales. Respiratory aerosol generation is activity-dependent with high person-to-person variability. Moreover, mask fit differs among people. Here, we measure the efficacy of surgical masks (EN14683 Type IIR) in reducing both aerosol (0.3 – 20 μm diameter) and droplet (20 – 1000 μm diameter) emission during breathing, speaking and five speech and language therapy tasks performed by a human cohort. When participants wore a surgical face mask, measured particle number concentrations at the front of the mask were always lower than that for breathing without mitigation in place. For breathing and speaking, the through-mask filtration efficiencies were 80% and 87%, respectively, while for voice therapy tasks the through-mask filtration efficiencies ranged from 89% (“Hey!”) to 95% (/a::/). Size-dependent through-mask filtration efficiencies were high (80 – 95%) for particles 0.5 – 2 μm diameter, with masks filtering a greater fraction of larger particle sizes. For particle sizes >4 µm diameter, filtration efficiencies of surgical face masks for all tested respiratory tasks were ∼100%. Surgical face masks significantly reduced the number of particles emitted from all respiratory activities. These results have implications for developing effective mitigations for diseases transmission through inhalation.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. ACKNOWLEDGEMENTSThe authors acknowledge funding from the Engineering and Physical Sciences Research Council (EP/V050516/1). B.R.B. acknowledges the Natural Environment Research Council (NE/P018459/1). B.R.B. and A.S. acknowledge funding from the European Research Council (Project 948498, AeroSurf). J.H. acknowledges funding from the EPSRC Centre for Doctoral Training in Aerosol Science (EP/S023593/1). Fortius Surgical Centre, Marylebone, London, is acknowledged for the generous provision of space to conduct the measurements. We thank all our volunteer participants for their contribution to this study.Data AvailabilityData underlying the figures are publicly available in the BioStudies database (https://www.ebi.ac.uk/biostudies/) under accession ID S-BSST1187.The analysed data are provided in Supplemental Information available online.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"52 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Filtration Efficiency of Surgical Masks for Expiratory Aerosol and Droplets Generated by Vocal Exercises\",\"authors\":\"Alicja Szczepanska, Joshua Harrison, Brian Saccente-Kennedy, Justice Archer, Natalie A. Watson, Christopher M. Orton, William J. Browne, Ruth Epstein, James D. Calder, Pallav L. Shah, Declan Costello, Bryan R. Bzdek, Jonathan P. Reid\",\"doi\":\"10.1080/02786826.2023.2267689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractTransmission of an airborne disease can occur when an individual exhales respiratory particles that contain infectious pathogens. Surgical face masks are often used to reduce the amount of respiratory aerosol emitted into the environment by an individual while also lowering the concentration of particles the individual inhales. Respiratory aerosol generation is activity-dependent with high person-to-person variability. Moreover, mask fit differs among people. Here, we measure the efficacy of surgical masks (EN14683 Type IIR) in reducing both aerosol (0.3 – 20 μm diameter) and droplet (20 – 1000 μm diameter) emission during breathing, speaking and five speech and language therapy tasks performed by a human cohort. When participants wore a surgical face mask, measured particle number concentrations at the front of the mask were always lower than that for breathing without mitigation in place. For breathing and speaking, the through-mask filtration efficiencies were 80% and 87%, respectively, while for voice therapy tasks the through-mask filtration efficiencies ranged from 89% (“Hey!”) to 95% (/a::/). Size-dependent through-mask filtration efficiencies were high (80 – 95%) for particles 0.5 – 2 μm diameter, with masks filtering a greater fraction of larger particle sizes. For particle sizes >4 µm diameter, filtration efficiencies of surgical face masks for all tested respiratory tasks were ∼100%. Surgical face masks significantly reduced the number of particles emitted from all respiratory activities. These results have implications for developing effective mitigations for diseases transmission through inhalation.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. ACKNOWLEDGEMENTSThe authors acknowledge funding from the Engineering and Physical Sciences Research Council (EP/V050516/1). B.R.B. acknowledges the Natural Environment Research Council (NE/P018459/1). B.R.B. and A.S. acknowledge funding from the European Research Council (Project 948498, AeroSurf). J.H. acknowledges funding from the EPSRC Centre for Doctoral Training in Aerosol Science (EP/S023593/1). Fortius Surgical Centre, Marylebone, London, is acknowledged for the generous provision of space to conduct the measurements. We thank all our volunteer participants for their contribution to this study.Data AvailabilityData underlying the figures are publicly available in the BioStudies database (https://www.ebi.ac.uk/biostudies/) under accession ID S-BSST1187.The analysed data are provided in Supplemental Information available online.\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2023.2267689\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2267689","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

当一个人呼出含有传染性病原体的呼吸道颗粒时,就会发生空气传播疾病。外科口罩通常用于减少个人向环境中排放的呼吸道气溶胶的数量,同时也降低个人吸入的颗粒浓度。呼吸道气溶胶的产生依赖于活动,具有高度的人与人之间的可变性。此外,口罩适合度因人而异。在这里,我们测量了外科口罩(EN14683型IIR)在呼吸、说话和五项言语和语言治疗任务中减少气溶胶(0.3 - 20 μm直径)和液滴(20 - 1000 μm直径)排放的功效。当参与者戴上外科口罩时,口罩前部测量到的颗粒数浓度总是低于没有缓解措施的呼吸。对于呼吸和说话,通过面罩过滤效率分别为80%和87%,而对于语音治疗任务,通过面罩过滤效率从89%(“嘿!”)到95% (/a::/)不等。对于直径为0.5 ~ 2 μm的颗粒,粒径相关的掩膜过滤效率高达80 ~ 95%,对于较大粒径的颗粒,掩膜过滤的比例更高。对于粒径>4µm的颗粒,外科口罩对所有测试呼吸任务的过滤效率为~ 100%。外科口罩显著减少了所有呼吸活动释放的颗粒数量。这些结果对制定通过吸入传播疾病的有效缓解措施具有启示意义。免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。作者感谢工程与物理科学研究委员会(EP/V050516/1)的资助。B.R.B.感谢自然环境研究委员会(NE/P018459/1)。B.R.B.和A.S.承认来自欧洲研究委员会的资助(项目948498,AeroSurf)。J.H.承认EPSRC气溶胶科学博士培训中心(EP/S023593/1)的资助。Fortius外科中心,Marylebone,伦敦,是公认的慷慨提供空间进行测量。我们感谢所有志愿者对这项研究的贡献。数据可获得性数据基础数据可在BioStudies数据库(https://www.ebi.ac.uk/biostudies/)公开获取,登录ID为S-BSST1187。分析的数据在网上提供的补充信息中提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Filtration Efficiency of Surgical Masks for Expiratory Aerosol and Droplets Generated by Vocal Exercises
AbstractTransmission of an airborne disease can occur when an individual exhales respiratory particles that contain infectious pathogens. Surgical face masks are often used to reduce the amount of respiratory aerosol emitted into the environment by an individual while also lowering the concentration of particles the individual inhales. Respiratory aerosol generation is activity-dependent with high person-to-person variability. Moreover, mask fit differs among people. Here, we measure the efficacy of surgical masks (EN14683 Type IIR) in reducing both aerosol (0.3 – 20 μm diameter) and droplet (20 – 1000 μm diameter) emission during breathing, speaking and five speech and language therapy tasks performed by a human cohort. When participants wore a surgical face mask, measured particle number concentrations at the front of the mask were always lower than that for breathing without mitigation in place. For breathing and speaking, the through-mask filtration efficiencies were 80% and 87%, respectively, while for voice therapy tasks the through-mask filtration efficiencies ranged from 89% (“Hey!”) to 95% (/a::/). Size-dependent through-mask filtration efficiencies were high (80 – 95%) for particles 0.5 – 2 μm diameter, with masks filtering a greater fraction of larger particle sizes. For particle sizes >4 µm diameter, filtration efficiencies of surgical face masks for all tested respiratory tasks were ∼100%. Surgical face masks significantly reduced the number of particles emitted from all respiratory activities. These results have implications for developing effective mitigations for diseases transmission through inhalation.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. ACKNOWLEDGEMENTSThe authors acknowledge funding from the Engineering and Physical Sciences Research Council (EP/V050516/1). B.R.B. acknowledges the Natural Environment Research Council (NE/P018459/1). B.R.B. and A.S. acknowledge funding from the European Research Council (Project 948498, AeroSurf). J.H. acknowledges funding from the EPSRC Centre for Doctoral Training in Aerosol Science (EP/S023593/1). Fortius Surgical Centre, Marylebone, London, is acknowledged for the generous provision of space to conduct the measurements. We thank all our volunteer participants for their contribution to this study.Data AvailabilityData underlying the figures are publicly available in the BioStudies database (https://www.ebi.ac.uk/biostudies/) under accession ID S-BSST1187.The analysed data are provided in Supplemental Information available online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol Science and Technology
Aerosol Science and Technology 环境科学-工程:化工
CiteScore
8.40
自引率
7.70%
发文量
73
审稿时长
3 months
期刊介绍: Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation. Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信