{"title":"海岸带生物多样性中文文本信息提取模型的深度学习研究","authors":"Xiujuan Wang, Xuerong Li","doi":"10.4018/ijswis.331756","DOIUrl":null,"url":null,"abstract":"In the coastal areas of China, scientists have collected nearly 500 species of coastal plants and seaweeds. The collected information includes species description, morphological characteristics, habitat distribution and resource value of plants in China. By effectively extracting Chinese text information, this article establishes a Chinese text information extraction model based on DL. This article is based on short-term and short-term memory artificial neural networks for short text classification. In addition, this article also integrates the L-MFCNN models of MFCNN for short text classification. Comparing the two methods with traditional text recognition algorithms, information extraction based on syntax analysis and deep learning, the results show that, compared with the comparison method, the recognition accuracy of Chinese text information of this neural network model can reach 96.69%. Through model training and parameter adjustment, Chinese text information of coastal biodiversity can be quickly extracted, and species categories or names can be identified.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"27 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning in Chinese Text Information Extraction Model for Coastal Biodiversity\",\"authors\":\"Xiujuan Wang, Xuerong Li\",\"doi\":\"10.4018/ijswis.331756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the coastal areas of China, scientists have collected nearly 500 species of coastal plants and seaweeds. The collected information includes species description, morphological characteristics, habitat distribution and resource value of plants in China. By effectively extracting Chinese text information, this article establishes a Chinese text information extraction model based on DL. This article is based on short-term and short-term memory artificial neural networks for short text classification. In addition, this article also integrates the L-MFCNN models of MFCNN for short text classification. Comparing the two methods with traditional text recognition algorithms, information extraction based on syntax analysis and deep learning, the results show that, compared with the comparison method, the recognition accuracy of Chinese text information of this neural network model can reach 96.69%. Through model training and parameter adjustment, Chinese text information of coastal biodiversity can be quickly extracted, and species categories or names can be identified.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.331756\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.331756","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep Learning in Chinese Text Information Extraction Model for Coastal Biodiversity
In the coastal areas of China, scientists have collected nearly 500 species of coastal plants and seaweeds. The collected information includes species description, morphological characteristics, habitat distribution and resource value of plants in China. By effectively extracting Chinese text information, this article establishes a Chinese text information extraction model based on DL. This article is based on short-term and short-term memory artificial neural networks for short text classification. In addition, this article also integrates the L-MFCNN models of MFCNN for short text classification. Comparing the two methods with traditional text recognition algorithms, information extraction based on syntax analysis and deep learning, the results show that, compared with the comparison method, the recognition accuracy of Chinese text information of this neural network model can reach 96.69%. Through model training and parameter adjustment, Chinese text information of coastal biodiversity can be quickly extracted, and species categories or names can be identified.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.