Peter Mani, Simon Allen, Stephen G. Evans, Jeffrey S. Kargel, Martin Mergili, Dmitry Petrakov, Markus Stoffel
{"title":"高山区地貌过程链——自然灾害评价与分类方法综述","authors":"Peter Mani, Simon Allen, Stephen G. Evans, Jeffrey S. Kargel, Martin Mergili, Dmitry Petrakov, Markus Stoffel","doi":"10.1029/2022RG000791","DOIUrl":null,"url":null,"abstract":"<p>Populations and infrastructure in high mountain regions are exposed to a wide range of natural hazards, the frequency, magnitude, and location of which are extremely sensitive to climate change. In cases where several hazards can occur simultaneously or where the occurrence of one event will change the disposition of another, assessments need to account for complex process chains. While process chains are widely recognized as a major threat, no systematic analysis has hitherto been undertaken. We therefore establish new understanding on the factors that directly trigger or alter the disposition for subsequent events in the chain and derive a novel classification scheme and parameters to aid natural hazard assessment. Process chains in high mountains are commonly associated with glacier retreat or permafrost degradation. Regional differences exist in the nature and rate of sequencing—some process chains are almost instantaneous, while other linkages are delayed. Process chains involving rapid sequences are difficult to predict, and impacts are often devastating. We demonstrate that process chains are triggered most frequently by progressive failures, being the result of gradual landscape weakening and not due to the occurrence of a distinct process. If fluvial processes are part of the process chain the reach (or mobility) of process chains is increased. Increased mobility can also occur if sediment deposition areas along river channels are activated. As climate changes causes glacial environments to transform into sediment-rich paraglacial and fluvial landscapes, it is expected that the mobility of process chains will increase in the future.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 4","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000791","citationCount":"1","resultStr":"{\"title\":\"Geomorphic Process Chains in High-Mountain Regions—A Review and Classification Approach for Natural Hazards Assessment\",\"authors\":\"Peter Mani, Simon Allen, Stephen G. Evans, Jeffrey S. Kargel, Martin Mergili, Dmitry Petrakov, Markus Stoffel\",\"doi\":\"10.1029/2022RG000791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Populations and infrastructure in high mountain regions are exposed to a wide range of natural hazards, the frequency, magnitude, and location of which are extremely sensitive to climate change. In cases where several hazards can occur simultaneously or where the occurrence of one event will change the disposition of another, assessments need to account for complex process chains. While process chains are widely recognized as a major threat, no systematic analysis has hitherto been undertaken. We therefore establish new understanding on the factors that directly trigger or alter the disposition for subsequent events in the chain and derive a novel classification scheme and parameters to aid natural hazard assessment. Process chains in high mountains are commonly associated with glacier retreat or permafrost degradation. Regional differences exist in the nature and rate of sequencing—some process chains are almost instantaneous, while other linkages are delayed. Process chains involving rapid sequences are difficult to predict, and impacts are often devastating. We demonstrate that process chains are triggered most frequently by progressive failures, being the result of gradual landscape weakening and not due to the occurrence of a distinct process. If fluvial processes are part of the process chain the reach (or mobility) of process chains is increased. Increased mobility can also occur if sediment deposition areas along river channels are activated. As climate changes causes glacial environments to transform into sediment-rich paraglacial and fluvial landscapes, it is expected that the mobility of process chains will increase in the future.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"61 4\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000791\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2022RG000791\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022RG000791","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geomorphic Process Chains in High-Mountain Regions—A Review and Classification Approach for Natural Hazards Assessment
Populations and infrastructure in high mountain regions are exposed to a wide range of natural hazards, the frequency, magnitude, and location of which are extremely sensitive to climate change. In cases where several hazards can occur simultaneously or where the occurrence of one event will change the disposition of another, assessments need to account for complex process chains. While process chains are widely recognized as a major threat, no systematic analysis has hitherto been undertaken. We therefore establish new understanding on the factors that directly trigger or alter the disposition for subsequent events in the chain and derive a novel classification scheme and parameters to aid natural hazard assessment. Process chains in high mountains are commonly associated with glacier retreat or permafrost degradation. Regional differences exist in the nature and rate of sequencing—some process chains are almost instantaneous, while other linkages are delayed. Process chains involving rapid sequences are difficult to predict, and impacts are often devastating. We demonstrate that process chains are triggered most frequently by progressive failures, being the result of gradual landscape weakening and not due to the occurrence of a distinct process. If fluvial processes are part of the process chain the reach (or mobility) of process chains is increased. Increased mobility can also occur if sediment deposition areas along river channels are activated. As climate changes causes glacial environments to transform into sediment-rich paraglacial and fluvial landscapes, it is expected that the mobility of process chains will increase in the future.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.