Acar Çelik, Abhijit Mitra, Tapish Agarwal, John Clark, Ian Jacobi, Beni Cukurel
{"title":"探索声流控制在翼型上的物理特性,以实现对高功和升程涡轮的潜在应用","authors":"Acar Çelik, Abhijit Mitra, Tapish Agarwal, John Clark, Ian Jacobi, Beni Cukurel","doi":"10.1115/1.4063923","DOIUrl":null,"url":null,"abstract":"Abstract In this study, acoustic actuation was applied experimentally to massively separated flows on simplified hump geometries which mimic the pressure distribution over high-work-and-lift low Reynolds airfoils. The acoustic excitation demonstrated significant control over flow separation, resulting in higher relative lift enhancement than standard, localized actuation techniques with similar momentum coefficients. Full field velocity measurements were used to examine the transient behavior of the actuated flow in order to explain the physical mechanism of separation control. The velocity measurements revealed the presence of a viscous wall-mode that organized the vorticity upstream of the separation point. A spatiotemporal correlation analysis found that the generation of these wall modes in the attached flow was the dominant cause of the subsequent reorganization of the separating shear layer and the change in separation dynamics. The importance of wall-modes to acoustic flow control mechanism has important implications for the design of new acoustic control strategies for high-speed turbomachinery. Along these lines, the ramifications of this phenomena are explored over geometries which are designed to approximate flow fields in highspeed turbomachinery. At the conducive Strouhal number, which scale linearly with the square root of Reynolds numbers, up to 22% lift enhancement is observed for excitation amplitudes in the range of ∼128dB, typical to the engine environment. Of many diverse flow-control techniques, acoustics can be effectively employed in low Reynolds turbine blades, which are prone to flow separation in the offdesign conditions with the ever-increasing demand for higher flow turning.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPLORING PHYSICS OF ACOUSTIC FLOW CONTROL OVER AIRFOILS TOWARDS POTENTIAL APPLICATION TO HIGH WORK AND LIFT TURBINES\",\"authors\":\"Acar Çelik, Abhijit Mitra, Tapish Agarwal, John Clark, Ian Jacobi, Beni Cukurel\",\"doi\":\"10.1115/1.4063923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, acoustic actuation was applied experimentally to massively separated flows on simplified hump geometries which mimic the pressure distribution over high-work-and-lift low Reynolds airfoils. The acoustic excitation demonstrated significant control over flow separation, resulting in higher relative lift enhancement than standard, localized actuation techniques with similar momentum coefficients. Full field velocity measurements were used to examine the transient behavior of the actuated flow in order to explain the physical mechanism of separation control. The velocity measurements revealed the presence of a viscous wall-mode that organized the vorticity upstream of the separation point. A spatiotemporal correlation analysis found that the generation of these wall modes in the attached flow was the dominant cause of the subsequent reorganization of the separating shear layer and the change in separation dynamics. The importance of wall-modes to acoustic flow control mechanism has important implications for the design of new acoustic control strategies for high-speed turbomachinery. Along these lines, the ramifications of this phenomena are explored over geometries which are designed to approximate flow fields in highspeed turbomachinery. At the conducive Strouhal number, which scale linearly with the square root of Reynolds numbers, up to 22% lift enhancement is observed for excitation amplitudes in the range of ∼128dB, typical to the engine environment. Of many diverse flow-control techniques, acoustics can be effectively employed in low Reynolds turbine blades, which are prone to flow separation in the offdesign conditions with the ever-increasing demand for higher flow turning.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063923\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063923","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
EXPLORING PHYSICS OF ACOUSTIC FLOW CONTROL OVER AIRFOILS TOWARDS POTENTIAL APPLICATION TO HIGH WORK AND LIFT TURBINES
Abstract In this study, acoustic actuation was applied experimentally to massively separated flows on simplified hump geometries which mimic the pressure distribution over high-work-and-lift low Reynolds airfoils. The acoustic excitation demonstrated significant control over flow separation, resulting in higher relative lift enhancement than standard, localized actuation techniques with similar momentum coefficients. Full field velocity measurements were used to examine the transient behavior of the actuated flow in order to explain the physical mechanism of separation control. The velocity measurements revealed the presence of a viscous wall-mode that organized the vorticity upstream of the separation point. A spatiotemporal correlation analysis found that the generation of these wall modes in the attached flow was the dominant cause of the subsequent reorganization of the separating shear layer and the change in separation dynamics. The importance of wall-modes to acoustic flow control mechanism has important implications for the design of new acoustic control strategies for high-speed turbomachinery. Along these lines, the ramifications of this phenomena are explored over geometries which are designed to approximate flow fields in highspeed turbomachinery. At the conducive Strouhal number, which scale linearly with the square root of Reynolds numbers, up to 22% lift enhancement is observed for excitation amplitudes in the range of ∼128dB, typical to the engine environment. Of many diverse flow-control techniques, acoustics can be effectively employed in low Reynolds turbine blades, which are prone to flow separation in the offdesign conditions with the ever-increasing demand for higher flow turning.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.