对偶四元数厄米特矩阵特征值的极大极小原理及对偶四元数矩阵的广义逆

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chen Ling, Liqun Qi, Hong Yan
{"title":"对偶四元数厄米特矩阵特征值的极大极小原理及对偶四元数矩阵的广义逆","authors":"Chen Ling, Liqun Qi, Hong Yan","doi":"10.1080/01630563.2023.2254090","DOIUrl":null,"url":null,"abstract":"AbstractDual quaternions can represent rigid body motion in 3D spaces, and have found wide applications in robotics, 3D motion modelling and control, and computer graphics. In this paper, we introduce three different right linear independency concepts for a set of dual quaternion vectors, and study some related basic properties for dual quaternion vectors and dual quaternion matrices. We present a minimax principle for eigenvalues of dual quaternion Hermitian matrices. Based upon a newly established Cauchy-Schwarz inequality for dual quaternion vectors and singular value decomposition of dual quaternion matrices, we propose an inequality for singular values of dual quaternion matrices. Finally, we introduce the concept of generalized inverses of dual quaternion matrices, and present necessary and sufficient conditions for a dual quaternion matrix to be one of four types of generalized inverses of another dual quaternion matrix.Keywords: Dual quaternion matrixdual quaternion vectoreigenvaluegeneralized inverselinear independenceminimax principle Additional informationFundingThis work was partially supported by Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA). Chen Ling’s work was supported by Natural Science Foundation of China (No. 11971138). Hong Yan’s work was supported by Hong Kong Research Grants Council (Project 11204821), Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA) and City University of Hong Kong (Project 9610034).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Minimax Principle for Eigenvalues of Dual Quaternion Hermitian Matrices and Generalized Inverses of Dual Quaternion Matrices\",\"authors\":\"Chen Ling, Liqun Qi, Hong Yan\",\"doi\":\"10.1080/01630563.2023.2254090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractDual quaternions can represent rigid body motion in 3D spaces, and have found wide applications in robotics, 3D motion modelling and control, and computer graphics. In this paper, we introduce three different right linear independency concepts for a set of dual quaternion vectors, and study some related basic properties for dual quaternion vectors and dual quaternion matrices. We present a minimax principle for eigenvalues of dual quaternion Hermitian matrices. Based upon a newly established Cauchy-Schwarz inequality for dual quaternion vectors and singular value decomposition of dual quaternion matrices, we propose an inequality for singular values of dual quaternion matrices. Finally, we introduce the concept of generalized inverses of dual quaternion matrices, and present necessary and sufficient conditions for a dual quaternion matrix to be one of four types of generalized inverses of another dual quaternion matrix.Keywords: Dual quaternion matrixdual quaternion vectoreigenvaluegeneralized inverselinear independenceminimax principle Additional informationFundingThis work was partially supported by Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA). Chen Ling’s work was supported by Natural Science Foundation of China (No. 11971138). Hong Yan’s work was supported by Hong Kong Research Grants Council (Project 11204821), Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA) and City University of Hong Kong (Project 9610034).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2254090\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2254090","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

摘要对偶四元数可以表示三维空间中的刚体运动,在机器人、三维运动建模与控制、计算机图形学等领域有着广泛的应用。本文引入了对偶四元数向量集的三种不同的右线性无关概念,研究了对偶四元数向量和对偶四元数矩阵的一些相关基本性质。给出了对偶四元数厄米矩阵特征值的极大极小原理。基于新建立的对偶四元数向量的Cauchy-Schwarz不等式和对偶四元数矩阵的奇异值分解,给出了对偶四元数矩阵奇异值的一个不等式。最后,我们引入了对偶四元数矩阵的广义逆的概念,并给出了一个对偶四元数矩阵是另一个对偶四元数矩阵的四类广义逆之一的充分必要条件。关键词:对偶四元数矩阵对偶四元数向量值广义逆线性无关极小原理附加信息经费资助本研究由香港创新科技署(InnoHK项目CIMDA)部分资助。陈玲的研究获得国家自然科学基金(11971138)资助。洪彦的研究得到了香港研究资助局(项目11204821)、香港创新科技署(项目CIMDA)和香港城市大学(项目9610034)的资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimax Principle for Eigenvalues of Dual Quaternion Hermitian Matrices and Generalized Inverses of Dual Quaternion Matrices
AbstractDual quaternions can represent rigid body motion in 3D spaces, and have found wide applications in robotics, 3D motion modelling and control, and computer graphics. In this paper, we introduce three different right linear independency concepts for a set of dual quaternion vectors, and study some related basic properties for dual quaternion vectors and dual quaternion matrices. We present a minimax principle for eigenvalues of dual quaternion Hermitian matrices. Based upon a newly established Cauchy-Schwarz inequality for dual quaternion vectors and singular value decomposition of dual quaternion matrices, we propose an inequality for singular values of dual quaternion matrices. Finally, we introduce the concept of generalized inverses of dual quaternion matrices, and present necessary and sufficient conditions for a dual quaternion matrix to be one of four types of generalized inverses of another dual quaternion matrix.Keywords: Dual quaternion matrixdual quaternion vectoreigenvaluegeneralized inverselinear independenceminimax principle Additional informationFundingThis work was partially supported by Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA). Chen Ling’s work was supported by Natural Science Foundation of China (No. 11971138). Hong Yan’s work was supported by Hong Kong Research Grants Council (Project 11204821), Hong Kong Innovation and Technology Commission (InnoHK Project CIMDA) and City University of Hong Kong (Project 9610034).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信