Arnaud Salvador, Guillaume Avice, Doris Breuer, Cédric Gillmann, Helmut Lammer, Emmanuel Marcq, Sean N. Raymond, Haruka Sakuraba, Manuel Scherf, M. J. Way
{"title":"岩浆、海洋、水和金星的早期大气","authors":"Arnaud Salvador, Guillaume Avice, Doris Breuer, Cédric Gillmann, Helmut Lammer, Emmanuel Marcq, Sean N. Raymond, Haruka Sakuraba, Manuel Scherf, M. J. Way","doi":"10.1007/s11214-023-00995-7","DOIUrl":null,"url":null,"abstract":"Abstract The current state and surface conditions of the Earth and its twin planet Venus are drastically different. Whether these differences are directly inherited from the earliest stages of planetary evolution, when the interior was molten, or arose later during the long-term evolution is still unclear. Yet, it is clear that water, its abundance, state, and distribution between the different planetary reservoirs, which are intimately related to the solidification and outgassing of the early magma ocean, are key components regarding past and present-day habitability, planetary evolution, and the different pathways leading to various surface conditions. In this chapter we start by reviewing the outcomes of the accretion sequence, with particular emphasis on the sources and timing of water delivery in light of available constraints, and the initial thermal state of Venus at the end of the main accretion. Then, we detail the processes at play during the early thermo-chemical evolution of molten terrestrial planets, and how they can affect the abundance and distribution of water within the different planetary reservoirs. Namely, we focus on the magma ocean cooling, solidification, and concurrent formation of the outgassed atmosphere. Accounting for the possible range of parameters for early Venus and based on the mechanisms and feedbacks described, we provide an overview of the likely evolutionary pathways leading to diverse surface conditions, from a temperate to a hellish early Venus. The implications of the resulting surface conditions and habitability are discussed in the context of the subsequent long-term interior and atmospheric evolution. Future research directions and observations are proposed to constrain the different scenarios in order to reconcile Venus’ early evolution with its current state, while deciphering which path it followed.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magma Ocean, Water, and the Early Atmosphere of Venus\",\"authors\":\"Arnaud Salvador, Guillaume Avice, Doris Breuer, Cédric Gillmann, Helmut Lammer, Emmanuel Marcq, Sean N. Raymond, Haruka Sakuraba, Manuel Scherf, M. J. Way\",\"doi\":\"10.1007/s11214-023-00995-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The current state and surface conditions of the Earth and its twin planet Venus are drastically different. Whether these differences are directly inherited from the earliest stages of planetary evolution, when the interior was molten, or arose later during the long-term evolution is still unclear. Yet, it is clear that water, its abundance, state, and distribution between the different planetary reservoirs, which are intimately related to the solidification and outgassing of the early magma ocean, are key components regarding past and present-day habitability, planetary evolution, and the different pathways leading to various surface conditions. In this chapter we start by reviewing the outcomes of the accretion sequence, with particular emphasis on the sources and timing of water delivery in light of available constraints, and the initial thermal state of Venus at the end of the main accretion. Then, we detail the processes at play during the early thermo-chemical evolution of molten terrestrial planets, and how they can affect the abundance and distribution of water within the different planetary reservoirs. Namely, we focus on the magma ocean cooling, solidification, and concurrent formation of the outgassed atmosphere. Accounting for the possible range of parameters for early Venus and based on the mechanisms and feedbacks described, we provide an overview of the likely evolutionary pathways leading to diverse surface conditions, from a temperate to a hellish early Venus. The implications of the resulting surface conditions and habitability are discussed in the context of the subsequent long-term interior and atmospheric evolution. Future research directions and observations are proposed to constrain the different scenarios in order to reconcile Venus’ early evolution with its current state, while deciphering which path it followed.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-00995-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-00995-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Magma Ocean, Water, and the Early Atmosphere of Venus
Abstract The current state and surface conditions of the Earth and its twin planet Venus are drastically different. Whether these differences are directly inherited from the earliest stages of planetary evolution, when the interior was molten, or arose later during the long-term evolution is still unclear. Yet, it is clear that water, its abundance, state, and distribution between the different planetary reservoirs, which are intimately related to the solidification and outgassing of the early magma ocean, are key components regarding past and present-day habitability, planetary evolution, and the different pathways leading to various surface conditions. In this chapter we start by reviewing the outcomes of the accretion sequence, with particular emphasis on the sources and timing of water delivery in light of available constraints, and the initial thermal state of Venus at the end of the main accretion. Then, we detail the processes at play during the early thermo-chemical evolution of molten terrestrial planets, and how they can affect the abundance and distribution of water within the different planetary reservoirs. Namely, we focus on the magma ocean cooling, solidification, and concurrent formation of the outgassed atmosphere. Accounting for the possible range of parameters for early Venus and based on the mechanisms and feedbacks described, we provide an overview of the likely evolutionary pathways leading to diverse surface conditions, from a temperate to a hellish early Venus. The implications of the resulting surface conditions and habitability are discussed in the context of the subsequent long-term interior and atmospheric evolution. Future research directions and observations are proposed to constrain the different scenarios in order to reconcile Venus’ early evolution with its current state, while deciphering which path it followed.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.